球茎坚果的蛋白质含水率的生产,以及通过发酵和酶水合物的结合来抑制血管上情酶的活性

Tesy Pratami, A. B. Sitanggang, C. H. Wijaya
{"title":"球茎坚果的蛋白质含水率的生产,以及通过发酵和酶水合物的结合来抑制血管上情酶的活性","authors":"Tesy Pratami, A. B. Sitanggang, C. H. Wijaya","doi":"10.6066/jtip.2022.33.2.157","DOIUrl":null,"url":null,"abstract":"Mucuna bean (Mucuna pruriens L.) is a legume having high protein content which has the potential as a source of bioactive peptides. One of the bioactive peptides is an angiotensin-converting enzyme (ACE) inhibitor, thus, mucuna beans might be used as a potential source of antihypertensive compounds. This study aimed to increase the functionality of proteins from mucuna beans as ACE inhibitors using a combination of fermentation and enzymatic hydrolysis followed by membrane filtration. The mucuna beans were fermented for 0, 24, 48, 96, and 144 h. The highest ACE inhibitory activity of 54.37%, was obtained by fermentation of the beans at 48 h, with a protein content of 20.82 mg/mL. The 48 h fermented mucuna beans were further hydrolyzed using alcalase or neutrase and subsequently filtered with UF membranes having 20,10 and 5 kDa cut-off. The enzymatic hydrolysis followed by membrane filtration increased the ACE inhibitory activity of mucuna beans. The neutrase hydrolysates resulting from 5 kDa membrane filtration showed the best ACE inhibitory activity (62.96% with a protein content of 10.39 mg/mL). A combination of fermentation and enzymatic hydrolysis followed by filtration using UF-membrane was able to produce ACE inhibitory peptides from mucuna beans. The potential of mucuna beans peptides as ACE inhibitors was due to the presence of negatively charged amino acid residues such as Asp and Glu, positively charged amino acids such as Arg and Lys, and hydrophobic amino acids such as Val, Leu, Ala, and Ile.","PeriodicalId":17790,"journal":{"name":"Jurnal Teknologi dan Industri Pangan","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Produksi Hidrolisat Protein Kacang Koro Benguk dengan Aktivitas Penghambat Kerja Enzim Pengkonversi Angiotensin melalui Kombinasi Fermentasi dan Hidrolisis Enzimatik\",\"authors\":\"Tesy Pratami, A. B. Sitanggang, C. H. Wijaya\",\"doi\":\"10.6066/jtip.2022.33.2.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mucuna bean (Mucuna pruriens L.) is a legume having high protein content which has the potential as a source of bioactive peptides. One of the bioactive peptides is an angiotensin-converting enzyme (ACE) inhibitor, thus, mucuna beans might be used as a potential source of antihypertensive compounds. This study aimed to increase the functionality of proteins from mucuna beans as ACE inhibitors using a combination of fermentation and enzymatic hydrolysis followed by membrane filtration. The mucuna beans were fermented for 0, 24, 48, 96, and 144 h. The highest ACE inhibitory activity of 54.37%, was obtained by fermentation of the beans at 48 h, with a protein content of 20.82 mg/mL. The 48 h fermented mucuna beans were further hydrolyzed using alcalase or neutrase and subsequently filtered with UF membranes having 20,10 and 5 kDa cut-off. The enzymatic hydrolysis followed by membrane filtration increased the ACE inhibitory activity of mucuna beans. The neutrase hydrolysates resulting from 5 kDa membrane filtration showed the best ACE inhibitory activity (62.96% with a protein content of 10.39 mg/mL). A combination of fermentation and enzymatic hydrolysis followed by filtration using UF-membrane was able to produce ACE inhibitory peptides from mucuna beans. The potential of mucuna beans peptides as ACE inhibitors was due to the presence of negatively charged amino acid residues such as Asp and Glu, positively charged amino acids such as Arg and Lys, and hydrophobic amino acids such as Val, Leu, Ala, and Ile.\",\"PeriodicalId\":17790,\"journal\":{\"name\":\"Jurnal Teknologi dan Industri Pangan\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Industri Pangan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6066/jtip.2022.33.2.157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Industri Pangan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6066/jtip.2022.33.2.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粘豆(Mucuna pruriens L.)是一种蛋白质含量高的豆科植物,具有作为生物活性肽来源的潜力。其中一种生物活性肽是血管紧张素转换酶(ACE)抑制剂,因此,黏液豆可能被用作抗高血压化合物的潜在来源。本研究旨在利用发酵、酶解和膜过滤相结合的方法提高蚕豆蛋白作为ACE抑制剂的功能。分别发酵0、24、48、96和144 h,发酵48 h时ACE抑制活性最高,为54.37%,蛋白含量为20.82 mg/mL。将发酵48 h的豆荚用碱性酶或中和酶进一步水解,然后用截断20kda、10kda和5kda的UF膜过滤。酶解后再进行膜过滤,可提高豆豆的ACE抑制活性。5 kDa膜过滤得到的中和酶水解产物ACE抑制活性最高,为62.96%,蛋白含量为10.39 mg/mL。通过发酵和酶解结合,然后用uf膜过滤,可以从蚕豆中提取ACE抑制肽。蚕豆肽作为ACE抑制剂的潜力是由于存在带负电荷的氨基酸残基,如Asp和Glu,带正电荷的氨基酸,如Arg和Lys,以及疏水氨基酸,如Val, Leu, Ala和Ile。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Produksi Hidrolisat Protein Kacang Koro Benguk dengan Aktivitas Penghambat Kerja Enzim Pengkonversi Angiotensin melalui Kombinasi Fermentasi dan Hidrolisis Enzimatik
Mucuna bean (Mucuna pruriens L.) is a legume having high protein content which has the potential as a source of bioactive peptides. One of the bioactive peptides is an angiotensin-converting enzyme (ACE) inhibitor, thus, mucuna beans might be used as a potential source of antihypertensive compounds. This study aimed to increase the functionality of proteins from mucuna beans as ACE inhibitors using a combination of fermentation and enzymatic hydrolysis followed by membrane filtration. The mucuna beans were fermented for 0, 24, 48, 96, and 144 h. The highest ACE inhibitory activity of 54.37%, was obtained by fermentation of the beans at 48 h, with a protein content of 20.82 mg/mL. The 48 h fermented mucuna beans were further hydrolyzed using alcalase or neutrase and subsequently filtered with UF membranes having 20,10 and 5 kDa cut-off. The enzymatic hydrolysis followed by membrane filtration increased the ACE inhibitory activity of mucuna beans. The neutrase hydrolysates resulting from 5 kDa membrane filtration showed the best ACE inhibitory activity (62.96% with a protein content of 10.39 mg/mL). A combination of fermentation and enzymatic hydrolysis followed by filtration using UF-membrane was able to produce ACE inhibitory peptides from mucuna beans. The potential of mucuna beans peptides as ACE inhibitors was due to the presence of negatively charged amino acid residues such as Asp and Glu, positively charged amino acids such as Arg and Lys, and hydrophobic amino acids such as Val, Leu, Ala, and Ile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信