距离-本地彩虹连接号

IF 0.5 4区 数学 Q3 MATHEMATICS
F. Septyanto, K. Sugeng
{"title":"距离-本地彩虹连接号","authors":"F. Septyanto, K. Sugeng","doi":"10.7151/dmgt.2325","DOIUrl":null,"url":null,"abstract":"Abstract Under an edge coloring (not necessarily proper), a rainbow path is a path whose edge colors are all distinct. The d-local rainbow connection number lrcd(G) (respectively, d-local strong rainbow connection number lsrcd(G)) is the smallest number of colors needed to color the edges of G such that any two vertices with distance at most d can be connected by a rainbow path (respectively, rainbow geodesic). This generalizes rainbow connection numbers, which are the special case d = diam(G). We discuss some bounds and exact values. Moreover, we also characterize all triples of positive integers d, a, b such that there is a connected graph G with lrcd(G) = a and lsrcd(G) = b.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"42 1","pages":"1027 - 1039"},"PeriodicalIF":0.5000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distance-Local Rainbow Connection Number\",\"authors\":\"F. Septyanto, K. Sugeng\",\"doi\":\"10.7151/dmgt.2325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Under an edge coloring (not necessarily proper), a rainbow path is a path whose edge colors are all distinct. The d-local rainbow connection number lrcd(G) (respectively, d-local strong rainbow connection number lsrcd(G)) is the smallest number of colors needed to color the edges of G such that any two vertices with distance at most d can be connected by a rainbow path (respectively, rainbow geodesic). This generalizes rainbow connection numbers, which are the special case d = diam(G). We discuss some bounds and exact values. Moreover, we also characterize all triples of positive integers d, a, b such that there is a connected graph G with lrcd(G) = a and lsrcd(G) = b.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\"42 1\",\"pages\":\"1027 - 1039\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2325\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2325","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在边缘着色(不一定是正确的)下,彩虹路径是边缘颜色都不同的路径。d-局部彩虹连接数lrcd(G)(分别为d-局部强彩虹连接数lsrcd(G))是为G的边缘上色所需的最小颜色数,使得任何两个距离不超过d的顶点都可以通过彩虹路径(分别为彩虹测地线)连接起来。这概括了彩虹连接数,即特殊情况d = diam(G)。我们讨论了一些边界和精确值。此外,我们还刻画了所有正整数d, a, b的三元组,使得存在lrcd(G) = a且lsrcd(G) = b的连通图G。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance-Local Rainbow Connection Number
Abstract Under an edge coloring (not necessarily proper), a rainbow path is a path whose edge colors are all distinct. The d-local rainbow connection number lrcd(G) (respectively, d-local strong rainbow connection number lsrcd(G)) is the smallest number of colors needed to color the edges of G such that any two vertices with distance at most d can be connected by a rainbow path (respectively, rainbow geodesic). This generalizes rainbow connection numbers, which are the special case d = diam(G). We discuss some bounds and exact values. Moreover, we also characterize all triples of positive integers d, a, b such that there is a connected graph G with lrcd(G) = a and lsrcd(G) = b.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信