形式变形理论的等变Grothendieck–Riemann–Roch定理

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
G. Kondyrev, A. Prikhodko
{"title":"形式变形理论的等变Grothendieck–Riemann–Roch定理","authors":"G. Kondyrev, A. Prikhodko","doi":"10.4310/cjm.2021.v9.n4.a1","DOIUrl":null,"url":null,"abstract":"We use the formalism of traces in higher categories to prove a common generalization of the holomorphic Atiyah-Bott fixed point formula and the Grothendieck-Riemann-Roch theorem. The proof is quite different from the original one proposed by Grothendieck et al.: it relies on the interplay between self dualities of quasiand indcoherent sheaves on X and formal deformation theory of Gaitsgory-Rozenblyum. In particular, we give a description of the Todd class in terms of the difference of two formal group structures on the derived loop scheme LX. The equivariant case is reduced to the non-equivariant one by a variant of the Atiyah-Bott localization theorem.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Equivariant Grothendieck–Riemann–Roch theorem via formal deformation theory\",\"authors\":\"G. Kondyrev, A. Prikhodko\",\"doi\":\"10.4310/cjm.2021.v9.n4.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the formalism of traces in higher categories to prove a common generalization of the holomorphic Atiyah-Bott fixed point formula and the Grothendieck-Riemann-Roch theorem. The proof is quite different from the original one proposed by Grothendieck et al.: it relies on the interplay between self dualities of quasiand indcoherent sheaves on X and formal deformation theory of Gaitsgory-Rozenblyum. In particular, we give a description of the Todd class in terms of the difference of two formal group structures on the derived loop scheme LX. The equivariant case is reduced to the non-equivariant one by a variant of the Atiyah-Bott localization theorem.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2021.v9.n4.a1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2021.v9.n4.a1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

利用高范畴中迹的形式化证明了全纯Atiyah-Bott不动点公式和grothendiek - riemann - roch定理的一般推广。该证明与Grothendieck等人提出的原始证明有很大的不同:它依赖于X上拟和非相干轴的自对偶性和Gaitsgory-Rozenblyum的形式变形理论之间的相互作用。特别地,我们给出了Todd类在推导出的环格式LX上的两个形式群结构的差异的描述。利用Atiyah-Bott局部化定理的一个变体,将等变情形简化为非等变情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant Grothendieck–Riemann–Roch theorem via formal deformation theory
We use the formalism of traces in higher categories to prove a common generalization of the holomorphic Atiyah-Bott fixed point formula and the Grothendieck-Riemann-Roch theorem. The proof is quite different from the original one proposed by Grothendieck et al.: it relies on the interplay between self dualities of quasiand indcoherent sheaves on X and formal deformation theory of Gaitsgory-Rozenblyum. In particular, we give a description of the Todd class in terms of the difference of two formal group structures on the derived loop scheme LX. The equivariant case is reduced to the non-equivariant one by a variant of the Atiyah-Bott localization theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信