具有固定角度的等角线

IF 5.7 1区 数学 Q1 MATHEMATICS
Zilin Jiang, Jonathan Tidor, Yuan Yao, Shengtong Zhang, Yufei Zhao
{"title":"具有固定角度的等角线","authors":"Zilin Jiang, Jonathan Tidor, Yuan Yao, Shengtong Zhang, Yufei Zhao","doi":"10.4007/annals.2021.194.3.3","DOIUrl":null,"url":null,"abstract":"Solving a longstanding problem on equiangular lines, we determine, for each given fixed angle and in all sufficiently large dimensions, the maximum number of lines pairwise separated by the given angle. \nFix $0 < \\alpha < 1$. Let $N_\\alpha(d)$ denote the maximum number of lines in $\\mathbb{R}^d$ with pairwise common angle $\\arccos \\alpha$. Let $k$ denote the minimum number (if it exists) of vertices of a graph whose adjacency matrix has spectral radius exactly $(1-\\alpha)/(2\\alpha)$. If $k < \\infty$, then $N_\\alpha(d) = \\lfloor k(d-1)/(k-1) \\rfloor$ for all sufficiently large $d$, and otherwise $N_\\alpha(d) = d + o(d)$. In particular, $N_{1/(2k-1)}(d) = \\lfloor k(d-1)/(k-1) \\rfloor$ for every integer $k\\geq 2$ and all sufficiently large $d$. \nA key ingredient is a new result in spectral graph theory: the adjacency matrix of a connected bounded degree graph has sublinear second eigenvalue multiplicity.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Equiangular lines with a fixed angle\",\"authors\":\"Zilin Jiang, Jonathan Tidor, Yuan Yao, Shengtong Zhang, Yufei Zhao\",\"doi\":\"10.4007/annals.2021.194.3.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving a longstanding problem on equiangular lines, we determine, for each given fixed angle and in all sufficiently large dimensions, the maximum number of lines pairwise separated by the given angle. \\nFix $0 < \\\\alpha < 1$. Let $N_\\\\alpha(d)$ denote the maximum number of lines in $\\\\mathbb{R}^d$ with pairwise common angle $\\\\arccos \\\\alpha$. Let $k$ denote the minimum number (if it exists) of vertices of a graph whose adjacency matrix has spectral radius exactly $(1-\\\\alpha)/(2\\\\alpha)$. If $k < \\\\infty$, then $N_\\\\alpha(d) = \\\\lfloor k(d-1)/(k-1) \\\\rfloor$ for all sufficiently large $d$, and otherwise $N_\\\\alpha(d) = d + o(d)$. In particular, $N_{1/(2k-1)}(d) = \\\\lfloor k(d-1)/(k-1) \\\\rfloor$ for every integer $k\\\\geq 2$ and all sufficiently large $d$. \\nA key ingredient is a new result in spectral graph theory: the adjacency matrix of a connected bounded degree graph has sublinear second eigenvalue multiplicity.\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2019-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2021.194.3.3\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2021.194.3.3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 43

摘要

为了解决等角线上的一个长期问题,我们为每个给定的固定角度和所有足够大的维度确定了由给定角度成对分隔的线的最大数量。修复$0<\alpha<1$。设$N_\alpha(d)$表示$\mathbb{R}^d$中具有成对公共角度$\arccos\alpha$的最大行数。设$k$表示邻接矩阵的谱半径恰好为$(1-\alpha)/(2\alpha)$的图的顶点的最小数目(如果存在)。如果$k<\infty$,则对于所有足够大的$d$,$N_\alpha(d)=\lfloor k(d-1)/(k-1)\rfloor$,否则$N_\aalpha(d)=d+o(d)$。特别地,$N_{1/(2k-1)}(d)=\lfloor k(d-1)/(k-1)\lfloor$对于每个整数$k\geq2$并且都足够大$d$。一个关键因素是谱图论的一个新结果:连通有界度图的邻接矩阵具有次线性第二特征值多重性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equiangular lines with a fixed angle
Solving a longstanding problem on equiangular lines, we determine, for each given fixed angle and in all sufficiently large dimensions, the maximum number of lines pairwise separated by the given angle. Fix $0 < \alpha < 1$. Let $N_\alpha(d)$ denote the maximum number of lines in $\mathbb{R}^d$ with pairwise common angle $\arccos \alpha$. Let $k$ denote the minimum number (if it exists) of vertices of a graph whose adjacency matrix has spectral radius exactly $(1-\alpha)/(2\alpha)$. If $k < \infty$, then $N_\alpha(d) = \lfloor k(d-1)/(k-1) \rfloor$ for all sufficiently large $d$, and otherwise $N_\alpha(d) = d + o(d)$. In particular, $N_{1/(2k-1)}(d) = \lfloor k(d-1)/(k-1) \rfloor$ for every integer $k\geq 2$ and all sufficiently large $d$. A key ingredient is a new result in spectral graph theory: the adjacency matrix of a connected bounded degree graph has sublinear second eigenvalue multiplicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信