FPS正在运行

IF 0.4 Q4 MATHEMATICS, APPLIED
Bertrand Teguia Tabuguia, W. Koepf
{"title":"FPS正在运行","authors":"Bertrand Teguia Tabuguia, W. Koepf","doi":"10.1145/3572867.3572873","DOIUrl":null,"url":null,"abstract":"Linear recurrence equations with constant coefficients define the power series coefficients of rational functions. However, one usually prefers to have an explicit formula for the sequence of coefficients, provided that such a formula is \"simple\" enough. Simplicity is related to the compactness of the formula due to the presence of algebraic numbers: \"the smaller, the simpler\". This poster showcases the capacity of recent updates on the Formal Power Series (FPS) algorithm, implemented in Maxima and Maple (convert/FormalPowerSeries), to find simple formulas for sequences like those from https://oeis.org/A307717, https://oeis.org/A226782, or https://oeis.org/A226784 by computing power series representations of their correctly guessed generating functions. We designed the algorithm for the more general context of univariate P-recursive sequences. Our implementations are available at http://www.mathematik.uni-kassel.de/~bteguia/FPS_webpage/FPS.htm","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"56 1","pages":"46 - 50"},"PeriodicalIF":0.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPS in action\",\"authors\":\"Bertrand Teguia Tabuguia, W. Koepf\",\"doi\":\"10.1145/3572867.3572873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear recurrence equations with constant coefficients define the power series coefficients of rational functions. However, one usually prefers to have an explicit formula for the sequence of coefficients, provided that such a formula is \\\"simple\\\" enough. Simplicity is related to the compactness of the formula due to the presence of algebraic numbers: \\\"the smaller, the simpler\\\". This poster showcases the capacity of recent updates on the Formal Power Series (FPS) algorithm, implemented in Maxima and Maple (convert/FormalPowerSeries), to find simple formulas for sequences like those from https://oeis.org/A307717, https://oeis.org/A226782, or https://oeis.org/A226784 by computing power series representations of their correctly guessed generating functions. We designed the algorithm for the more general context of univariate P-recursive sequences. Our implementations are available at http://www.mathematik.uni-kassel.de/~bteguia/FPS_webpage/FPS.htm\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"56 1\",\"pages\":\"46 - 50\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572867.3572873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572867.3572873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

常系数线性递推方程定义了有理函数的幂级数系数。然而,人们通常倾向于为系数序列提供一个明确的公式,前提是这样的公式足够“简单”。由于代数数的存在,简单性与公式的紧致性有关:“越小,越简单”。这张海报展示了在Maxima和Maple(convert/FormalPowerSeries)中实现的形式幂级数(FPS)算法的最新更新的能力,可以为以下序列找到简单的公式https://oeis.org/A307717,https://oeis.org/A226782或https://oeis.org/A226784通过计算它们正确猜测的生成函数的幂级数表示。我们为单变量P递归序列的更一般的上下文设计了算法。我们的实施可在http://www.mathematik.uni-kassel.de/~bteguia/FPS_webpage/FPS.htm
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPS in action
Linear recurrence equations with constant coefficients define the power series coefficients of rational functions. However, one usually prefers to have an explicit formula for the sequence of coefficients, provided that such a formula is "simple" enough. Simplicity is related to the compactness of the formula due to the presence of algebraic numbers: "the smaller, the simpler". This poster showcases the capacity of recent updates on the Formal Power Series (FPS) algorithm, implemented in Maxima and Maple (convert/FormalPowerSeries), to find simple formulas for sequences like those from https://oeis.org/A307717, https://oeis.org/A226782, or https://oeis.org/A226784 by computing power series representations of their correctly guessed generating functions. We designed the algorithm for the more general context of univariate P-recursive sequences. Our implementations are available at http://www.mathematik.uni-kassel.de/~bteguia/FPS_webpage/FPS.htm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信