抛物型k -Hessian方程导数的内估计和Liouville型定理

IF 1 3区 数学 Q1 MATHEMATICS
J. Bao, J. Qiang, Z. Tang, C. Wang
{"title":"抛物型k -Hessian方程导数的内估计和Liouville型定理","authors":"J. Bao, J. Qiang, Z. Tang, C. Wang","doi":"10.3934/cpaa.2023073","DOIUrl":null,"url":null,"abstract":"In this paper, we establish the gradient and Pogorelov estimates for $k$-convex-monotone solutions to parabolic $k$-Hessian equations of the form $-u_t\\sigma_k(\\lambda(D^2u))=\\psi(x,t,u)$. We also apply such estimates to obtain a Liouville type result, which states that any $k$-convex-monotone and $C^{4,2}$ solution $u$ to $-u_t\\sigma_k(\\lambda(D^2u))=1$ in $\\mathbb{R}^n\\times(-\\infty,0]$ must be a linear function of $t$ plus a quadratic polynomial of $x$, under some growth assumptions on $u$.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interior estimates of derivatives and a Liouville type theorem for parabolic $ k $-Hessian equations\",\"authors\":\"J. Bao, J. Qiang, Z. Tang, C. Wang\",\"doi\":\"10.3934/cpaa.2023073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish the gradient and Pogorelov estimates for $k$-convex-monotone solutions to parabolic $k$-Hessian equations of the form $-u_t\\\\sigma_k(\\\\lambda(D^2u))=\\\\psi(x,t,u)$. We also apply such estimates to obtain a Liouville type result, which states that any $k$-convex-monotone and $C^{4,2}$ solution $u$ to $-u_t\\\\sigma_k(\\\\lambda(D^2u))=1$ in $\\\\mathbb{R}^n\\\\times(-\\\\infty,0]$ must be a linear function of $t$ plus a quadratic polynomial of $x$, under some growth assumptions on $u$.\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2023073\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/cpaa.2023073","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文建立了形式为$-u_t\sigma_k(\lambda(D^2u))=\psi(x,t,u)$的抛物型$k$ -Hessian方程的$k$ -凸单调解的梯度和Pogorelov估计。我们也应用这样的估计得到了一个Liouville型结果,该结果表明,在$u$的一些增长假设下,$\mathbb{R}^n\times(-\infty,0]$中任何$k$ -凸单调和$u$到$-u_t\sigma_k(\lambda(D^2u))=1$的$C^{4,2}$解必须是$t$的线性函数加上$x$的二次多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interior estimates of derivatives and a Liouville type theorem for parabolic $ k $-Hessian equations
In this paper, we establish the gradient and Pogorelov estimates for $k$-convex-monotone solutions to parabolic $k$-Hessian equations of the form $-u_t\sigma_k(\lambda(D^2u))=\psi(x,t,u)$. We also apply such estimates to obtain a Liouville type result, which states that any $k$-convex-monotone and $C^{4,2}$ solution $u$ to $-u_t\sigma_k(\lambda(D^2u))=1$ in $\mathbb{R}^n\times(-\infty,0]$ must be a linear function of $t$ plus a quadratic polynomial of $x$, under some growth assumptions on $u$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信