阳极溶出伏安法测定痕量镉中表面活性剂干扰的研究和消除

IF 1.3 4区 工程技术 Q4 CHEMISTRY, PHYSICAL
M. Grabarczyk, C. Wardak, Agnieszka Wawruch
{"title":"阳极溶出伏安法测定痕量镉中表面活性剂干扰的研究和消除","authors":"M. Grabarczyk, C. Wardak, Agnieszka Wawruch","doi":"10.37190/ppmp/170717","DOIUrl":null,"url":null,"abstract":"This article aims to investigate in detail to what extent surfactants affect the determination of cadmium by anodic stripping voltammetry. In recent years, the production and use of surfactants have been steadily increasing, so that their concentration in environmental water samples is rising. At the same time, it is known that organic compounds, such as surfactants, often hinder the voltammetric determination of trace elements by stripping. Non-ionic (Triton X-100, Brij 35, Tween 20, Tween 60, Tween 80), cationic (CTAB, CTAC, DTAB, HPC) and anionic (DSS, SDS) compounds were selected to investigate the effect of surfactants on the voltammetric signal of cadmium. At the same time, the extent to which the addition of Amberlite resins to the analysed solution eliminates the interfering effect of surfactants was tested. Three types of Amberlite resins XAD-2, XAD-7 and XAD-16 were selected for the study and the ratio of resin weight to solution volume was determined. Finally, the determination of cadmium in surfactant-enriched environmental samples was carried out. The recoveries obtained between 95.5 and 107%, with RSD between 3.4 and 6.2%, confirm the validity and correctness of the proposed procedure All measurements were carried out by anodic stripping voltammetry using a CNTs/SGC electrode modified with a bismuth film as the working electrode.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation and elimination of surfactant-induced interferences in anodic stripping voltammetry for the determination of trace amounts of cadmium\",\"authors\":\"M. Grabarczyk, C. Wardak, Agnieszka Wawruch\",\"doi\":\"10.37190/ppmp/170717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to investigate in detail to what extent surfactants affect the determination of cadmium by anodic stripping voltammetry. In recent years, the production and use of surfactants have been steadily increasing, so that their concentration in environmental water samples is rising. At the same time, it is known that organic compounds, such as surfactants, often hinder the voltammetric determination of trace elements by stripping. Non-ionic (Triton X-100, Brij 35, Tween 20, Tween 60, Tween 80), cationic (CTAB, CTAC, DTAB, HPC) and anionic (DSS, SDS) compounds were selected to investigate the effect of surfactants on the voltammetric signal of cadmium. At the same time, the extent to which the addition of Amberlite resins to the analysed solution eliminates the interfering effect of surfactants was tested. Three types of Amberlite resins XAD-2, XAD-7 and XAD-16 were selected for the study and the ratio of resin weight to solution volume was determined. Finally, the determination of cadmium in surfactant-enriched environmental samples was carried out. The recoveries obtained between 95.5 and 107%, with RSD between 3.4 and 6.2%, confirm the validity and correctness of the proposed procedure All measurements were carried out by anodic stripping voltammetry using a CNTs/SGC electrode modified with a bismuth film as the working electrode.\",\"PeriodicalId\":49137,\"journal\":{\"name\":\"Physicochemical Problems of Mineral Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physicochemical Problems of Mineral Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/ppmp/170717\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/170717","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在详细探讨表面活性剂对阳极溶出伏安法测定镉的影响程度。近年来,表面活性剂的生产和使用不断增加,使其在环境水样中的浓度不断上升。同时,众所周知,有机化合物,如表面活性剂,往往阻碍伏安法测定微量元素的溶出。选择非离子型(Triton X-100、Brij 35、Tween 20、Tween 60、Tween 80)、阳离子型(CTAB、CTAC、DTAB、HPC)和阴离子型(DSS、SDS)化合物研究表面活性剂对镉伏安信号的影响。同时,测试了在分析溶液中加入Amberlite树脂消除表面活性剂干扰作用的程度。选择了三种Amberlite树脂XAD-2、XAD-7和XAD-16进行研究,并测定了树脂质量与溶液体积的比值。最后,进行了富表面活性剂环境样品中镉的测定。回收率在95.5% ~ 107%之间,RSD在3.4 ~ 6.2%之间,证实了所提出方法的有效性和正确性。所有测量均采用阳极溶出伏安法进行,使用铋膜修饰的CNTs/SGC电极作为工作电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation and elimination of surfactant-induced interferences in anodic stripping voltammetry for the determination of trace amounts of cadmium
This article aims to investigate in detail to what extent surfactants affect the determination of cadmium by anodic stripping voltammetry. In recent years, the production and use of surfactants have been steadily increasing, so that their concentration in environmental water samples is rising. At the same time, it is known that organic compounds, such as surfactants, often hinder the voltammetric determination of trace elements by stripping. Non-ionic (Triton X-100, Brij 35, Tween 20, Tween 60, Tween 80), cationic (CTAB, CTAC, DTAB, HPC) and anionic (DSS, SDS) compounds were selected to investigate the effect of surfactants on the voltammetric signal of cadmium. At the same time, the extent to which the addition of Amberlite resins to the analysed solution eliminates the interfering effect of surfactants was tested. Three types of Amberlite resins XAD-2, XAD-7 and XAD-16 were selected for the study and the ratio of resin weight to solution volume was determined. Finally, the determination of cadmium in surfactant-enriched environmental samples was carried out. The recoveries obtained between 95.5 and 107%, with RSD between 3.4 and 6.2%, confirm the validity and correctness of the proposed procedure All measurements were carried out by anodic stripping voltammetry using a CNTs/SGC electrode modified with a bismuth film as the working electrode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physicochemical Problems of Mineral Processing
Physicochemical Problems of Mineral Processing CHEMISTRY, PHYSICAL-MINING & MINERAL PROCESSING
自引率
6.70%
发文量
99
期刊介绍: Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy. Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal. Topics of interest Analytical techniques and applied mineralogy Computer applications Comminution, classification and sorting Froth flotation Solid-liquid separation Gravity concentration Magnetic and electric separation Hydro and biohydrometallurgy Extractive metallurgy Recycling and mineral wastes Environmental aspects of mineral processing and other mineral processing related subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信