基于自适应系统布谷鸟搜索算法的最优高通FIR滤波器

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Puneet Bansal, S. S. Gill
{"title":"基于自适应系统布谷鸟搜索算法的最优高通FIR滤波器","authors":"Puneet Bansal, S. S. Gill","doi":"10.2478/cait-2022-0046","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents the design of a desired linear phase digital Finite Impulse Response (FIR) High Pass (HP) filter based on Adaptive Systematic Cuckoo Search Algorithm (ACSA). The deviation, or error from the desired response, is assessed along with the stop-band and pass-band attenuation of the filter. The Cuckoo Search algorithm (CS) is used to avoid local minima because the error surface is typically non-differentiable, nonlinear, and multimodal. The ACSA is applied to the minimax criterion (L∞-norm) based error fitness function, which offers a better equiripple response for passband and stopband, high stopband attenuation, and rapid convergence for the developed optimal HP FIR filter algorithm. The simulation findings demonstrate that when compared to the Parks McClellan (PM), Particle Swarm Optimization (PSO), CRazy Particle Swarm Optimization (CRPSO), and Cuckoo Search algorithms, the proposed HP FIR filter employing ACSA leads to better solutions.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal High Pass FIR Filter Based on Adaptive Systematic Cuckoo Search Algorithm\",\"authors\":\"Puneet Bansal, S. S. Gill\",\"doi\":\"10.2478/cait-2022-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents the design of a desired linear phase digital Finite Impulse Response (FIR) High Pass (HP) filter based on Adaptive Systematic Cuckoo Search Algorithm (ACSA). The deviation, or error from the desired response, is assessed along with the stop-band and pass-band attenuation of the filter. The Cuckoo Search algorithm (CS) is used to avoid local minima because the error surface is typically non-differentiable, nonlinear, and multimodal. The ACSA is applied to the minimax criterion (L∞-norm) based error fitness function, which offers a better equiripple response for passband and stopband, high stopband attenuation, and rapid convergence for the developed optimal HP FIR filter algorithm. The simulation findings demonstrate that when compared to the Parks McClellan (PM), Particle Swarm Optimization (PSO), CRazy Particle Swarm Optimization (CRPSO), and Cuckoo Search algorithms, the proposed HP FIR filter employing ACSA leads to better solutions.\",\"PeriodicalId\":45562,\"journal\":{\"name\":\"Cybernetics and Information Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cait-2022-0046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于自适应系统布谷鸟搜索算法(ACSA)的期望线性相位数字有限脉冲响应(FIR)高通(HP)滤波器的设计。与期望响应的偏差或误差与滤波器的阻带和通带衰减一起评估。由于误差曲面通常是不可微的、非线性的和多模态的,因此采用布谷鸟搜索算法(CS)来避免局部极小值。将ACSA应用于基于极大极小准则(L∞范数)的误差适应度函数,使所开发的最优HP FIR滤波器算法具有更好的通带和阻带等纹响应、高阻带衰减和快速收敛性。仿真结果表明,与Parks McClellan (PM)、Particle Swarm Optimization (PSO)、CRazy Particle Swarm Optimization (CRPSO)和Cuckoo Search算法相比,采用ACSA的HP FIR滤波器具有更好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal High Pass FIR Filter Based on Adaptive Systematic Cuckoo Search Algorithm
Abstract This paper presents the design of a desired linear phase digital Finite Impulse Response (FIR) High Pass (HP) filter based on Adaptive Systematic Cuckoo Search Algorithm (ACSA). The deviation, or error from the desired response, is assessed along with the stop-band and pass-band attenuation of the filter. The Cuckoo Search algorithm (CS) is used to avoid local minima because the error surface is typically non-differentiable, nonlinear, and multimodal. The ACSA is applied to the minimax criterion (L∞-norm) based error fitness function, which offers a better equiripple response for passband and stopband, high stopband attenuation, and rapid convergence for the developed optimal HP FIR filter algorithm. The simulation findings demonstrate that when compared to the Parks McClellan (PM), Particle Swarm Optimization (PSO), CRazy Particle Swarm Optimization (CRPSO), and Cuckoo Search algorithms, the proposed HP FIR filter employing ACSA leads to better solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信