{"title":"基于自适应系统布谷鸟搜索算法的最优高通FIR滤波器","authors":"Puneet Bansal, S. S. Gill","doi":"10.2478/cait-2022-0046","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents the design of a desired linear phase digital Finite Impulse Response (FIR) High Pass (HP) filter based on Adaptive Systematic Cuckoo Search Algorithm (ACSA). The deviation, or error from the desired response, is assessed along with the stop-band and pass-band attenuation of the filter. The Cuckoo Search algorithm (CS) is used to avoid local minima because the error surface is typically non-differentiable, nonlinear, and multimodal. The ACSA is applied to the minimax criterion (L∞-norm) based error fitness function, which offers a better equiripple response for passband and stopband, high stopband attenuation, and rapid convergence for the developed optimal HP FIR filter algorithm. The simulation findings demonstrate that when compared to the Parks McClellan (PM), Particle Swarm Optimization (PSO), CRazy Particle Swarm Optimization (CRPSO), and Cuckoo Search algorithms, the proposed HP FIR filter employing ACSA leads to better solutions.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal High Pass FIR Filter Based on Adaptive Systematic Cuckoo Search Algorithm\",\"authors\":\"Puneet Bansal, S. S. Gill\",\"doi\":\"10.2478/cait-2022-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents the design of a desired linear phase digital Finite Impulse Response (FIR) High Pass (HP) filter based on Adaptive Systematic Cuckoo Search Algorithm (ACSA). The deviation, or error from the desired response, is assessed along with the stop-band and pass-band attenuation of the filter. The Cuckoo Search algorithm (CS) is used to avoid local minima because the error surface is typically non-differentiable, nonlinear, and multimodal. The ACSA is applied to the minimax criterion (L∞-norm) based error fitness function, which offers a better equiripple response for passband and stopband, high stopband attenuation, and rapid convergence for the developed optimal HP FIR filter algorithm. The simulation findings demonstrate that when compared to the Parks McClellan (PM), Particle Swarm Optimization (PSO), CRazy Particle Swarm Optimization (CRPSO), and Cuckoo Search algorithms, the proposed HP FIR filter employing ACSA leads to better solutions.\",\"PeriodicalId\":45562,\"journal\":{\"name\":\"Cybernetics and Information Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cait-2022-0046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Optimal High Pass FIR Filter Based on Adaptive Systematic Cuckoo Search Algorithm
Abstract This paper presents the design of a desired linear phase digital Finite Impulse Response (FIR) High Pass (HP) filter based on Adaptive Systematic Cuckoo Search Algorithm (ACSA). The deviation, or error from the desired response, is assessed along with the stop-band and pass-band attenuation of the filter. The Cuckoo Search algorithm (CS) is used to avoid local minima because the error surface is typically non-differentiable, nonlinear, and multimodal. The ACSA is applied to the minimax criterion (L∞-norm) based error fitness function, which offers a better equiripple response for passband and stopband, high stopband attenuation, and rapid convergence for the developed optimal HP FIR filter algorithm. The simulation findings demonstrate that when compared to the Parks McClellan (PM), Particle Swarm Optimization (PSO), CRazy Particle Swarm Optimization (CRPSO), and Cuckoo Search algorithms, the proposed HP FIR filter employing ACSA leads to better solutions.