图的一些基于度的拓扑指标和归一化拉普拉斯能量

IF 1 Q1 MATHEMATICS
Zimo Yan, Xie Zheng, Jianping Li
{"title":"图的一些基于度的拓扑指标和归一化拉普拉斯能量","authors":"Zimo Yan, Xie Zheng, Jianping Li","doi":"10.47443/dml.2022.059","DOIUrl":null,"url":null,"abstract":"In this paper, by utilizing the concept of the energy of a vertex, connections between some vertex-degree-based topological indices (including the general Randi´c index, the first Zagreb index, and the forgotten index) and the energy of graphs are established. Several bounds on the energy of the graphs containing no isolated vertices are also given in terms of the first Zagreb index and the forgotten index. Moreover, bounds on the normalized Laplacian energy in terms of two particular cases of the general Randi´c index are obtained.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Degree-Based Topological Indices and (Normalized Laplacian) Energy of Graphs\",\"authors\":\"Zimo Yan, Xie Zheng, Jianping Li\",\"doi\":\"10.47443/dml.2022.059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by utilizing the concept of the energy of a vertex, connections between some vertex-degree-based topological indices (including the general Randi´c index, the first Zagreb index, and the forgotten index) and the energy of graphs are established. Several bounds on the energy of the graphs containing no isolated vertices are also given in terms of the first Zagreb index and the forgotten index. Moreover, bounds on the normalized Laplacian energy in terms of two particular cases of the general Randi´c index are obtained.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用顶点能量的概念,建立了一些基于顶点度的拓扑指标(包括一般的Randi´c指标、第一萨格勒布指标和遗忘指标)与图的能量之间的联系。利用第一个萨格勒布指数和遗忘指数,给出了无孤立顶点图的几个能量界。此外,还得到了广义Randi´c指标的两种特殊情况下归一化拉普拉斯能量的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Degree-Based Topological Indices and (Normalized Laplacian) Energy of Graphs
In this paper, by utilizing the concept of the energy of a vertex, connections between some vertex-degree-based topological indices (including the general Randi´c index, the first Zagreb index, and the forgotten index) and the energy of graphs are established. Several bounds on the energy of the graphs containing no isolated vertices are also given in terms of the first Zagreb index and the forgotten index. Moreover, bounds on the normalized Laplacian energy in terms of two particular cases of the general Randi´c index are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信