多分数布朗运动驱动的随机微分方程的稳定性

IF 0.3 Q4 STATISTICS & PROBABILITY
Oussama El Barrimi, Y. Ouknine
{"title":"多分数布朗运动驱动的随机微分方程的稳定性","authors":"Oussama El Barrimi, Y. Ouknine","doi":"10.1515/rose-2021-2055","DOIUrl":null,"url":null,"abstract":"Abstract Our aim in this paper is to establish some strong stability results for solutions of stochastic differential equations driven by a Riemann–Liouville multifractional Brownian motion. The latter is defined as a Gaussian non-stationary process with a Hurst parameter as a function of time. The results are obtained assuming that the pathwise uniqueness property holds and using Skorokhod’s selection theorem.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"29 1","pages":"87 - 96"},"PeriodicalIF":0.3000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rose-2021-2055","citationCount":"0","resultStr":"{\"title\":\"Stability of stochastic differential equations driven by multifractional Brownian motion\",\"authors\":\"Oussama El Barrimi, Y. Ouknine\",\"doi\":\"10.1515/rose-2021-2055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Our aim in this paper is to establish some strong stability results for solutions of stochastic differential equations driven by a Riemann–Liouville multifractional Brownian motion. The latter is defined as a Gaussian non-stationary process with a Hurst parameter as a function of time. The results are obtained assuming that the pathwise uniqueness property holds and using Skorokhod’s selection theorem.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"29 1\",\"pages\":\"87 - 96\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/rose-2021-2055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2021-2055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2021-2055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文的目的是建立由Riemann-Liouville多重分形布朗运动驱动的随机微分方程解的一些强稳定性结果。后者被定义为具有赫斯特参数作为时间函数的高斯非平稳过程。假设路径唯一性性质成立,并利用Skorokhod选择定理得到了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of stochastic differential equations driven by multifractional Brownian motion
Abstract Our aim in this paper is to establish some strong stability results for solutions of stochastic differential equations driven by a Riemann–Liouville multifractional Brownian motion. The latter is defined as a Gaussian non-stationary process with a Hurst parameter as a function of time. The results are obtained assuming that the pathwise uniqueness property holds and using Skorokhod’s selection theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信