{"title":"移民出生死亡过程研究","authors":"Shin K.-S., N. Viswanath","doi":"10.17535/crorr.2022.0004","DOIUrl":null,"url":null,"abstract":"Birth-death processes are applied in the modelling of many biological populations, such as tumour cells and viruses. Various studies have established that birth-death processes, which occurwhen the population size is zero, are not in-line with reality in many situations. Therefore, in this study, the birth-death processes with immigration were investigated. We considered two immigration policies. First, immigration is allowed if and only if the population size is zero. Second, immigration at a constant rate is allowed irrespective of the population size. Birth and death rates were chosen such that the mean population size is a Gompertz function when the immigration rate is zero. The transient population size probability was obtained for both cases. Several tumour growth datasets were fitted using the mean population size of the above models and standard birth-death model without immigration. The two models with immigration provided entirely different probabilities of the population size being zero at an arbitrary epoch when compared with the model without immigration. Moreover, all three models provided a similar fit to the data. For each of the datasets studied, the models that allowed immigration produced less variance than the non-immigration model.","PeriodicalId":44065,"journal":{"name":"Croatian Operational Research Review","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Birth-Death Processes with Immigration\",\"authors\":\"Shin K.-S., N. Viswanath\",\"doi\":\"10.17535/crorr.2022.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Birth-death processes are applied in the modelling of many biological populations, such as tumour cells and viruses. Various studies have established that birth-death processes, which occurwhen the population size is zero, are not in-line with reality in many situations. Therefore, in this study, the birth-death processes with immigration were investigated. We considered two immigration policies. First, immigration is allowed if and only if the population size is zero. Second, immigration at a constant rate is allowed irrespective of the population size. Birth and death rates were chosen such that the mean population size is a Gompertz function when the immigration rate is zero. The transient population size probability was obtained for both cases. Several tumour growth datasets were fitted using the mean population size of the above models and standard birth-death model without immigration. The two models with immigration provided entirely different probabilities of the population size being zero at an arbitrary epoch when compared with the model without immigration. Moreover, all three models provided a similar fit to the data. For each of the datasets studied, the models that allowed immigration produced less variance than the non-immigration model.\",\"PeriodicalId\":44065,\"journal\":{\"name\":\"Croatian Operational Research Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Croatian Operational Research Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17535/crorr.2022.0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Operational Research Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17535/crorr.2022.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
Birth-death processes are applied in the modelling of many biological populations, such as tumour cells and viruses. Various studies have established that birth-death processes, which occurwhen the population size is zero, are not in-line with reality in many situations. Therefore, in this study, the birth-death processes with immigration were investigated. We considered two immigration policies. First, immigration is allowed if and only if the population size is zero. Second, immigration at a constant rate is allowed irrespective of the population size. Birth and death rates were chosen such that the mean population size is a Gompertz function when the immigration rate is zero. The transient population size probability was obtained for both cases. Several tumour growth datasets were fitted using the mean population size of the above models and standard birth-death model without immigration. The two models with immigration provided entirely different probabilities of the population size being zero at an arbitrary epoch when compared with the model without immigration. Moreover, all three models provided a similar fit to the data. For each of the datasets studied, the models that allowed immigration produced less variance than the non-immigration model.
期刊介绍:
Croatian Operational Research Review (CRORR) is the journal which publishes original scientific papers from the area of operational research. The purpose is to publish papers from various aspects of operational research (OR) with the aim of presenting scientific ideas that will contribute both to theoretical development and practical application of OR. The scope of the journal covers the following subject areas: linear and non-linear programming, integer programing, combinatorial and discrete optimization, multi-objective programming, stohastic models and optimization, scheduling, macroeconomics, economic theory, game theory, statistics and econometrics, marketing and data analysis, information and decision support systems, banking, finance, insurance, environment, energy, health, neural networks and fuzzy systems, control theory, simulation, practical OR and applications. The audience includes both researchers and practitioners from the area of operations research, applied mathematics, statistics, econometrics, intelligent methods, simulation, and other areas included in the above list of topics. The journal has an international board of editors, consisting of more than 30 editors – university professors from Croatia, Slovenia, USA, Italy, Germany, Austria and other coutries.