{"title":"通过边际结构模型的平均治疗效果的双稳健估计","authors":"M. Schomaker, Philipp F. M. Baumann","doi":"10.1353/obs.2023.0025","DOIUrl":null,"url":null,"abstract":"Abstract:Some causal parameters are defined on subgroups of the observed data, such as the average treatment effect on the treated and variations thereof. We explain how such parameters can be defined through parameters in a marginal structural (working) model. We illustrate how existing software can be used for doubly robust effect estimation of those parameters. Our proposal for confidence interval estimation is based on the delta method. All concepts are illustrated by estimands and data from the data challenge of the 2022 American Causal Inference Conference.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doubly Robust Estimation of Average Treatment Effects on the Treated through Marginal Structural Models\",\"authors\":\"M. Schomaker, Philipp F. M. Baumann\",\"doi\":\"10.1353/obs.2023.0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:Some causal parameters are defined on subgroups of the observed data, such as the average treatment effect on the treated and variations thereof. We explain how such parameters can be defined through parameters in a marginal structural (working) model. We illustrate how existing software can be used for doubly robust effect estimation of those parameters. Our proposal for confidence interval estimation is based on the delta method. All concepts are illustrated by estimands and data from the data challenge of the 2022 American Causal Inference Conference.\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2023.0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2023.0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Doubly Robust Estimation of Average Treatment Effects on the Treated through Marginal Structural Models
Abstract:Some causal parameters are defined on subgroups of the observed data, such as the average treatment effect on the treated and variations thereof. We explain how such parameters can be defined through parameters in a marginal structural (working) model. We illustrate how existing software can be used for doubly robust effect estimation of those parameters. Our proposal for confidence interval estimation is based on the delta method. All concepts are illustrated by estimands and data from the data challenge of the 2022 American Causal Inference Conference.