通过边际结构模型的平均治疗效果的双稳健估计

M. Schomaker, Philipp F. M. Baumann
{"title":"通过边际结构模型的平均治疗效果的双稳健估计","authors":"M. Schomaker, Philipp F. M. Baumann","doi":"10.1353/obs.2023.0025","DOIUrl":null,"url":null,"abstract":"Abstract:Some causal parameters are defined on subgroups of the observed data, such as the average treatment effect on the treated and variations thereof. We explain how such parameters can be defined through parameters in a marginal structural (working) model. We illustrate how existing software can be used for doubly robust effect estimation of those parameters. Our proposal for confidence interval estimation is based on the delta method. All concepts are illustrated by estimands and data from the data challenge of the 2022 American Causal Inference Conference.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doubly Robust Estimation of Average Treatment Effects on the Treated through Marginal Structural Models\",\"authors\":\"M. Schomaker, Philipp F. M. Baumann\",\"doi\":\"10.1353/obs.2023.0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:Some causal parameters are defined on subgroups of the observed data, such as the average treatment effect on the treated and variations thereof. We explain how such parameters can be defined through parameters in a marginal structural (working) model. We illustrate how existing software can be used for doubly robust effect estimation of those parameters. Our proposal for confidence interval estimation is based on the delta method. All concepts are illustrated by estimands and data from the data challenge of the 2022 American Causal Inference Conference.\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2023.0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2023.0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:在观测数据的子组上定义了一些因果参数,如平均治疗效应对被治疗者的影响及其变化。我们解释了如何通过边际结构(工作)模型中的参数来定义这些参数。我们说明了现有的软件如何用于这些参数的双鲁棒效应估计。我们提出的置信区间估计是基于delta方法的。所有概念都由来自2022年美国因果推理会议数据挑战的估计和数据来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Doubly Robust Estimation of Average Treatment Effects on the Treated through Marginal Structural Models
Abstract:Some causal parameters are defined on subgroups of the observed data, such as the average treatment effect on the treated and variations thereof. We explain how such parameters can be defined through parameters in a marginal structural (working) model. We illustrate how existing software can be used for doubly robust effect estimation of those parameters. Our proposal for confidence interval estimation is based on the delta method. All concepts are illustrated by estimands and data from the data challenge of the 2022 American Causal Inference Conference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信