{"title":"超材料界面处麦克斯韦方程组的谱理论。第二部分:限吸、限幅原理及界面共振","authors":"M. Cassier, C. Hazard, P. Joly","doi":"10.1080/03605302.2022.2051188","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with the time-dependent Maxwell’s equations for a plane interface between a negative material described by the Drude model and the vacuum, which fill, respectively, two complementary half-spaces. In a first paper, we have constructed a generalized Fourier transform which diagonalizes the Hamiltonian that represents the propagation of transverse electric waves. In this second paper, we use this transform to prove the limiting absorption and limiting amplitude principles, which concern, respectively, the behavior of the resolvent near the continuous spectrum and the long time response of the medium to a time-harmonic source of prescribed frequency. This paper also underlines the existence of an interface resonance which occurs when there exists a particular frequency characterized by a ratio of permittivities and permeabilities equal to −1 across the interface. At this frequency, the response of the system to a harmonic forcing term blows up linearly in time. Such a resonance is unusual for wave problem in unbounded domains and corresponds to a non-zero embedded eigenvalue of infinite multiplicity of the underlying operator. This is the time counterpart of the ill-posdness of the corresponding harmonic problem.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"47 1","pages":"1217 - 1295"},"PeriodicalIF":2.1000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Spectral theory for Maxwell’s equations at the interface of a metamaterial. Part II: Limiting absorption, limiting amplitude principles and interface resonance\",\"authors\":\"M. Cassier, C. Hazard, P. Joly\",\"doi\":\"10.1080/03605302.2022.2051188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is concerned with the time-dependent Maxwell’s equations for a plane interface between a negative material described by the Drude model and the vacuum, which fill, respectively, two complementary half-spaces. In a first paper, we have constructed a generalized Fourier transform which diagonalizes the Hamiltonian that represents the propagation of transverse electric waves. In this second paper, we use this transform to prove the limiting absorption and limiting amplitude principles, which concern, respectively, the behavior of the resolvent near the continuous spectrum and the long time response of the medium to a time-harmonic source of prescribed frequency. This paper also underlines the existence of an interface resonance which occurs when there exists a particular frequency characterized by a ratio of permittivities and permeabilities equal to −1 across the interface. At this frequency, the response of the system to a harmonic forcing term blows up linearly in time. Such a resonance is unusual for wave problem in unbounded domains and corresponds to a non-zero embedded eigenvalue of infinite multiplicity of the underlying operator. This is the time counterpart of the ill-posdness of the corresponding harmonic problem.\",\"PeriodicalId\":50657,\"journal\":{\"name\":\"Communications in Partial Differential Equations\",\"volume\":\"47 1\",\"pages\":\"1217 - 1295\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2051188\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2051188","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spectral theory for Maxwell’s equations at the interface of a metamaterial. Part II: Limiting absorption, limiting amplitude principles and interface resonance
Abstract This paper is concerned with the time-dependent Maxwell’s equations for a plane interface between a negative material described by the Drude model and the vacuum, which fill, respectively, two complementary half-spaces. In a first paper, we have constructed a generalized Fourier transform which diagonalizes the Hamiltonian that represents the propagation of transverse electric waves. In this second paper, we use this transform to prove the limiting absorption and limiting amplitude principles, which concern, respectively, the behavior of the resolvent near the continuous spectrum and the long time response of the medium to a time-harmonic source of prescribed frequency. This paper also underlines the existence of an interface resonance which occurs when there exists a particular frequency characterized by a ratio of permittivities and permeabilities equal to −1 across the interface. At this frequency, the response of the system to a harmonic forcing term blows up linearly in time. Such a resonance is unusual for wave problem in unbounded domains and corresponds to a non-zero embedded eigenvalue of infinite multiplicity of the underlying operator. This is the time counterpart of the ill-posdness of the corresponding harmonic problem.
期刊介绍:
This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.