关于一类托里式谎言的尤-田-唐纳森通信

IF 0.8 4区 数学 Q2 MATHEMATICS
S. Jubert
{"title":"关于一类托里式谎言的尤-田-唐纳森通信","authors":"S. Jubert","doi":"10.5802/aif.3580","DOIUrl":null,"url":null,"abstract":"We established a Yau--Tian--Donaldson type correspondence, expressed in terms of a single Delzant polytope, concerning the existence of extremal K\\\"ahler metrics on a large class of toric fibrations, introduced by Apostolov--Calderbank--Gauduchon--Tonnesen-Friedman and called semi-simple principal toric fibrations. We use that an extremal metric on the total space corresponds to a weighted constant scalar curvature K\\\"ahler metric (in the sense of Lahdili) on the corresponding toric fiber in order to obtain an equivalence between the existence of extremal K\\\"ahler metrics on the total space and a suitable notion of weighted uniform K-stability of the corresponding Delzant polytope. As an application, we show that the projective plane bundle $\\mathbb{P}(\\mathcal{L}_0\\oplus\\mathcal{L}_1 \\oplus \\mathcal{L}_2)$, where $\\mathcal{L}_i$ are holomorphic line bundles over an elliptic curve, admits an extremal metric in every K\\\"ahler class.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Yau–Tian–Donaldson correspondence on a class of toric fibrations\",\"authors\":\"S. Jubert\",\"doi\":\"10.5802/aif.3580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We established a Yau--Tian--Donaldson type correspondence, expressed in terms of a single Delzant polytope, concerning the existence of extremal K\\\\\\\"ahler metrics on a large class of toric fibrations, introduced by Apostolov--Calderbank--Gauduchon--Tonnesen-Friedman and called semi-simple principal toric fibrations. We use that an extremal metric on the total space corresponds to a weighted constant scalar curvature K\\\\\\\"ahler metric (in the sense of Lahdili) on the corresponding toric fiber in order to obtain an equivalence between the existence of extremal K\\\\\\\"ahler metrics on the total space and a suitable notion of weighted uniform K-stability of the corresponding Delzant polytope. As an application, we show that the projective plane bundle $\\\\mathbb{P}(\\\\mathcal{L}_0\\\\oplus\\\\mathcal{L}_1 \\\\oplus \\\\mathcal{L}_2)$, where $\\\\mathcal{L}_i$ are holomorphic line bundles over an elliptic curve, admits an extremal metric in every K\\\\\\\"ahler class.\",\"PeriodicalId\":50781,\"journal\":{\"name\":\"Annales De L Institut Fourier\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Fourier\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3580\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3580","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们建立了一个Yau-Tian-Donaldson类型的对应关系,用一个单一的Delzant多面体表示,关于一大类复曲面上极值K\“ahler度量的存在性,由Apostolov-Calderbank-Gauduchon-Tonnesen-Friedman引入,称为半简单主复曲面。我们使用总空间上的极值度量对应于相应复曲面上的加权常标量曲率K\”ahler度量(在Lahdili的意义上),以便得到了全空间上极值K\“ahler度量的存在性与相应Delzant多面体的加权一致K-稳定性的一个适当概念之间的等价性。作为一个应用,我们证明了投影平面丛$\mathbb{P}(\mathcal{L}_0\oplus\mathcal{L}_1\oplus\mathcal{L}_2)$,其中$\mathcal{L}_i$是椭圆曲线上的全纯线性丛,在每个K\“ahler类中都允许一个极值度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Yau–Tian–Donaldson correspondence on a class of toric fibrations
We established a Yau--Tian--Donaldson type correspondence, expressed in terms of a single Delzant polytope, concerning the existence of extremal K\"ahler metrics on a large class of toric fibrations, introduced by Apostolov--Calderbank--Gauduchon--Tonnesen-Friedman and called semi-simple principal toric fibrations. We use that an extremal metric on the total space corresponds to a weighted constant scalar curvature K\"ahler metric (in the sense of Lahdili) on the corresponding toric fiber in order to obtain an equivalence between the existence of extremal K\"ahler metrics on the total space and a suitable notion of weighted uniform K-stability of the corresponding Delzant polytope. As an application, we show that the projective plane bundle $\mathbb{P}(\mathcal{L}_0\oplus\mathcal{L}_1 \oplus \mathcal{L}_2)$, where $\mathcal{L}_i$ are holomorphic line bundles over an elliptic curve, admits an extremal metric in every K\"ahler class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信