{"title":"关于一类托里式谎言的尤-田-唐纳森通信","authors":"S. Jubert","doi":"10.5802/aif.3580","DOIUrl":null,"url":null,"abstract":"We established a Yau--Tian--Donaldson type correspondence, expressed in terms of a single Delzant polytope, concerning the existence of extremal K\\\"ahler metrics on a large class of toric fibrations, introduced by Apostolov--Calderbank--Gauduchon--Tonnesen-Friedman and called semi-simple principal toric fibrations. We use that an extremal metric on the total space corresponds to a weighted constant scalar curvature K\\\"ahler metric (in the sense of Lahdili) on the corresponding toric fiber in order to obtain an equivalence between the existence of extremal K\\\"ahler metrics on the total space and a suitable notion of weighted uniform K-stability of the corresponding Delzant polytope. As an application, we show that the projective plane bundle $\\mathbb{P}(\\mathcal{L}_0\\oplus\\mathcal{L}_1 \\oplus \\mathcal{L}_2)$, where $\\mathcal{L}_i$ are holomorphic line bundles over an elliptic curve, admits an extremal metric in every K\\\"ahler class.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Yau–Tian–Donaldson correspondence on a class of toric fibrations\",\"authors\":\"S. Jubert\",\"doi\":\"10.5802/aif.3580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We established a Yau--Tian--Donaldson type correspondence, expressed in terms of a single Delzant polytope, concerning the existence of extremal K\\\\\\\"ahler metrics on a large class of toric fibrations, introduced by Apostolov--Calderbank--Gauduchon--Tonnesen-Friedman and called semi-simple principal toric fibrations. We use that an extremal metric on the total space corresponds to a weighted constant scalar curvature K\\\\\\\"ahler metric (in the sense of Lahdili) on the corresponding toric fiber in order to obtain an equivalence between the existence of extremal K\\\\\\\"ahler metrics on the total space and a suitable notion of weighted uniform K-stability of the corresponding Delzant polytope. As an application, we show that the projective plane bundle $\\\\mathbb{P}(\\\\mathcal{L}_0\\\\oplus\\\\mathcal{L}_1 \\\\oplus \\\\mathcal{L}_2)$, where $\\\\mathcal{L}_i$ are holomorphic line bundles over an elliptic curve, admits an extremal metric in every K\\\\\\\"ahler class.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Yau–Tian–Donaldson correspondence on a class of toric fibrations
We established a Yau--Tian--Donaldson type correspondence, expressed in terms of a single Delzant polytope, concerning the existence of extremal K\"ahler metrics on a large class of toric fibrations, introduced by Apostolov--Calderbank--Gauduchon--Tonnesen-Friedman and called semi-simple principal toric fibrations. We use that an extremal metric on the total space corresponds to a weighted constant scalar curvature K\"ahler metric (in the sense of Lahdili) on the corresponding toric fiber in order to obtain an equivalence between the existence of extremal K\"ahler metrics on the total space and a suitable notion of weighted uniform K-stability of the corresponding Delzant polytope. As an application, we show that the projective plane bundle $\mathbb{P}(\mathcal{L}_0\oplus\mathcal{L}_1 \oplus \mathcal{L}_2)$, where $\mathcal{L}_i$ are holomorphic line bundles over an elliptic curve, admits an extremal metric in every K\"ahler class.