{"title":"广义Bernstein算子的一些数值应用","authors":"D. Occorsio, M. Russo, W. Themistoclakis","doi":"10.33205/CMA.868272","DOIUrl":null,"url":null,"abstract":"In this paper some recent applications of the so-called Generalized Bernstein polynomials are collected. This polynomial sequence is constructed by means of the samples of a continuous function f on equispaced points of [0; 1] and depends on an additional parameter which yields the remarkable property of improving the rate of convergence to the function f, according with the smoothness of f. This means that the sequence does not suffer of the saturation phenomena occurring by using the classical Bernstein polynomials or arising in piecewise polynomial approximation. The applications considered here deal with the numerical integration and the simultaneous approximation. Quadrature rules on equidistant nodes of [0; 1] are studied for the numerical computation of ordinary integrals in one or two dimensions, and usefully employed in Nystrom methods for solving Fredholm integral equations. Moreover, the simultaneous approximation of the Hilbert transform and its derivative (the Hadamard transform) is illustrated. For all the applications, some numerical details are given in addition to the error estimates, and the proposed approximation methods have been implemented providing numerical tests which confirm the theoretical estimates. Some open problems are also introduced.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Some numerical applications of generalized Bernstein operators\",\"authors\":\"D. Occorsio, M. Russo, W. Themistoclakis\",\"doi\":\"10.33205/CMA.868272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper some recent applications of the so-called Generalized Bernstein polynomials are collected. This polynomial sequence is constructed by means of the samples of a continuous function f on equispaced points of [0; 1] and depends on an additional parameter which yields the remarkable property of improving the rate of convergence to the function f, according with the smoothness of f. This means that the sequence does not suffer of the saturation phenomena occurring by using the classical Bernstein polynomials or arising in piecewise polynomial approximation. The applications considered here deal with the numerical integration and the simultaneous approximation. Quadrature rules on equidistant nodes of [0; 1] are studied for the numerical computation of ordinary integrals in one or two dimensions, and usefully employed in Nystrom methods for solving Fredholm integral equations. Moreover, the simultaneous approximation of the Hilbert transform and its derivative (the Hadamard transform) is illustrated. For all the applications, some numerical details are given in addition to the error estimates, and the proposed approximation methods have been implemented providing numerical tests which confirm the theoretical estimates. Some open problems are also introduced.\",\"PeriodicalId\":36038,\"journal\":{\"name\":\"Constructive Mathematical Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33205/CMA.868272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/CMA.868272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some numerical applications of generalized Bernstein operators
In this paper some recent applications of the so-called Generalized Bernstein polynomials are collected. This polynomial sequence is constructed by means of the samples of a continuous function f on equispaced points of [0; 1] and depends on an additional parameter which yields the remarkable property of improving the rate of convergence to the function f, according with the smoothness of f. This means that the sequence does not suffer of the saturation phenomena occurring by using the classical Bernstein polynomials or arising in piecewise polynomial approximation. The applications considered here deal with the numerical integration and the simultaneous approximation. Quadrature rules on equidistant nodes of [0; 1] are studied for the numerical computation of ordinary integrals in one or two dimensions, and usefully employed in Nystrom methods for solving Fredholm integral equations. Moreover, the simultaneous approximation of the Hilbert transform and its derivative (the Hadamard transform) is illustrated. For all the applications, some numerical details are given in addition to the error estimates, and the proposed approximation methods have been implemented providing numerical tests which confirm the theoretical estimates. Some open problems are also introduced.