{"title":"基于智能手机的精细时间范围测量的评估与校正","authors":"Y. Bai, A. Kealy, Lucas Holden","doi":"10.1080/19479832.2020.1853614","DOIUrl":null,"url":null,"abstract":"ABSTRACT Wi-Fi-based positioning technology has been recognised as a useful and important technology for location-based service (LBS) accompanied by the rapid development and application of smartphones since the beginning of the 21st century. However, no mature technology or method of Wi-Fi-based positioning had provided a satisfying output in the past 20 years, until recently, when the IEEE 802.11mc standard was released and hardware-supported in the market, in which a fine time measurement (FTM) protocol and multiple round-trip time (RTT) was used for more accurate and robust ranging without the received signal strength indicator (RSSI) involved. This paper provided an evaluation and ranging offset correction approach for Wi-Fi FTM based ranging. The characteristics of the ranging offset deviation errors are specifically examined through two well-designed evaluation tests. In addition, the offset deviation errors from a CompuLab WILD router and a Google access point (AP) are also compared. An average of 0.181 m accuracy was achieved after a typical offset correction process to the ranging estimates obtained from a complex surrounding environment with line-of-sight (LOS) condition. The research outcome will become a useful resource for implementing other algorithms such as machine learning and multi-lateration for our future research projects.","PeriodicalId":46012,"journal":{"name":"International Journal of Image and Data Fusion","volume":"12 1","pages":"185 - 202"},"PeriodicalIF":1.8000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19479832.2020.1853614","citationCount":"5","resultStr":"{\"title\":\"Evaluation and correction of smartphone-based fine time range measurements\",\"authors\":\"Y. Bai, A. Kealy, Lucas Holden\",\"doi\":\"10.1080/19479832.2020.1853614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Wi-Fi-based positioning technology has been recognised as a useful and important technology for location-based service (LBS) accompanied by the rapid development and application of smartphones since the beginning of the 21st century. However, no mature technology or method of Wi-Fi-based positioning had provided a satisfying output in the past 20 years, until recently, when the IEEE 802.11mc standard was released and hardware-supported in the market, in which a fine time measurement (FTM) protocol and multiple round-trip time (RTT) was used for more accurate and robust ranging without the received signal strength indicator (RSSI) involved. This paper provided an evaluation and ranging offset correction approach for Wi-Fi FTM based ranging. The characteristics of the ranging offset deviation errors are specifically examined through two well-designed evaluation tests. In addition, the offset deviation errors from a CompuLab WILD router and a Google access point (AP) are also compared. An average of 0.181 m accuracy was achieved after a typical offset correction process to the ranging estimates obtained from a complex surrounding environment with line-of-sight (LOS) condition. The research outcome will become a useful resource for implementing other algorithms such as machine learning and multi-lateration for our future research projects.\",\"PeriodicalId\":46012,\"journal\":{\"name\":\"International Journal of Image and Data Fusion\",\"volume\":\"12 1\",\"pages\":\"185 - 202\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19479832.2020.1853614\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Data Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19479832.2020.1853614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Data Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19479832.2020.1853614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Evaluation and correction of smartphone-based fine time range measurements
ABSTRACT Wi-Fi-based positioning technology has been recognised as a useful and important technology for location-based service (LBS) accompanied by the rapid development and application of smartphones since the beginning of the 21st century. However, no mature technology or method of Wi-Fi-based positioning had provided a satisfying output in the past 20 years, until recently, when the IEEE 802.11mc standard was released and hardware-supported in the market, in which a fine time measurement (FTM) protocol and multiple round-trip time (RTT) was used for more accurate and robust ranging without the received signal strength indicator (RSSI) involved. This paper provided an evaluation and ranging offset correction approach for Wi-Fi FTM based ranging. The characteristics of the ranging offset deviation errors are specifically examined through two well-designed evaluation tests. In addition, the offset deviation errors from a CompuLab WILD router and a Google access point (AP) are also compared. An average of 0.181 m accuracy was achieved after a typical offset correction process to the ranging estimates obtained from a complex surrounding environment with line-of-sight (LOS) condition. The research outcome will become a useful resource for implementing other algorithms such as machine learning and multi-lateration for our future research projects.
期刊介绍:
International Journal of Image and Data Fusion provides a single source of information for all aspects of image and data fusion methodologies, developments, techniques and applications. Image and data fusion techniques are important for combining the many sources of satellite, airborne and ground based imaging systems, and integrating these with other related data sets for enhanced information extraction and decision making. Image and data fusion aims at the integration of multi-sensor, multi-temporal, multi-resolution and multi-platform image data, together with geospatial data, GIS, in-situ, and other statistical data sets for improved information extraction, as well as to increase the reliability of the information. This leads to more accurate information that provides for robust operational performance, i.e. increased confidence, reduced ambiguity and improved classification enabling evidence based management. The journal welcomes original research papers, review papers, shorter letters, technical articles, book reviews and conference reports in all areas of image and data fusion including, but not limited to, the following aspects and topics: • Automatic registration/geometric aspects of fusing images with different spatial, spectral, temporal resolutions; phase information; or acquired in different modes • Pixel, feature and decision level fusion algorithms and methodologies • Data Assimilation: fusing data with models • Multi-source classification and information extraction • Integration of satellite, airborne and terrestrial sensor systems • Fusing temporal data sets for change detection studies (e.g. for Land Cover/Land Use Change studies) • Image and data mining from multi-platform, multi-source, multi-scale, multi-temporal data sets (e.g. geometric information, topological information, statistical information, etc.).