{"title":"某些toeplitz相关参数三角矩阵的最小奇异值","authors":"M. S. Solary, A. Kovacec, S. Capizzano","doi":"10.1515/spma-2020-0127","DOIUrl":null,"url":null,"abstract":"Abstract Let L be the infinite lower triangular Toeplitz matrix with first column (µ, a1, a2, ..., ap, a1, ..., ap, ...)T and let D be the infinite diagonal matrix whose entries are 1, 2, 3, . . . Let A := L + D be the sum of these two matrices. Bünger and Rump have shown that if p = 2 and certain linear inequalities between the parameters µ, a1, a2, are satisfied, then the singular values of any finite left upper square submatrix of A can be bounded from below by an expression depending only on those parameters, but not on the matrix size. By extending parts of their reasoning, we show that a similar behaviour should be expected for arbitrary p and a much larger range of values for µ, a1, ..., ap. It depends on the asymptotics in µ of the l2-norm of certain sequences defined by linear recurrences, in which these parameters enter. We also consider the relevance of the results in a numerical analysis setting and moreover a few selected numerical experiments are presented in order to show that our bounds are accurate in practical computations.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"9 1","pages":"103 - 111"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0127","citationCount":"0","resultStr":"{\"title\":\"The smallest singular value of certain Toeplitz-related parametric triangular matrices\",\"authors\":\"M. S. Solary, A. Kovacec, S. Capizzano\",\"doi\":\"10.1515/spma-2020-0127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let L be the infinite lower triangular Toeplitz matrix with first column (µ, a1, a2, ..., ap, a1, ..., ap, ...)T and let D be the infinite diagonal matrix whose entries are 1, 2, 3, . . . Let A := L + D be the sum of these two matrices. Bünger and Rump have shown that if p = 2 and certain linear inequalities between the parameters µ, a1, a2, are satisfied, then the singular values of any finite left upper square submatrix of A can be bounded from below by an expression depending only on those parameters, but not on the matrix size. By extending parts of their reasoning, we show that a similar behaviour should be expected for arbitrary p and a much larger range of values for µ, a1, ..., ap. It depends on the asymptotics in µ of the l2-norm of certain sequences defined by linear recurrences, in which these parameters enter. We also consider the relevance of the results in a numerical analysis setting and moreover a few selected numerical experiments are presented in order to show that our bounds are accurate in practical computations.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"9 1\",\"pages\":\"103 - 111\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/spma-2020-0127\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2020-0127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The smallest singular value of certain Toeplitz-related parametric triangular matrices
Abstract Let L be the infinite lower triangular Toeplitz matrix with first column (µ, a1, a2, ..., ap, a1, ..., ap, ...)T and let D be the infinite diagonal matrix whose entries are 1, 2, 3, . . . Let A := L + D be the sum of these two matrices. Bünger and Rump have shown that if p = 2 and certain linear inequalities between the parameters µ, a1, a2, are satisfied, then the singular values of any finite left upper square submatrix of A can be bounded from below by an expression depending only on those parameters, but not on the matrix size. By extending parts of their reasoning, we show that a similar behaviour should be expected for arbitrary p and a much larger range of values for µ, a1, ..., ap. It depends on the asymptotics in µ of the l2-norm of certain sequences defined by linear recurrences, in which these parameters enter. We also consider the relevance of the results in a numerical analysis setting and moreover a few selected numerical experiments are presented in order to show that our bounds are accurate in practical computations.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.