关于线性拟有限群的有限Sylow子群共轭问题的一个注记

IF 0.8 4区 数学 Q2 MATHEMATICS
Pinar Uugurlu
{"title":"关于线性拟有限群的有限Sylow子群共轭问题的一个注记","authors":"Pinar Uugurlu","doi":"10.3906/mat-1604-11","DOIUrl":null,"url":null,"abstract":"We prove the conjugacy of Sylow $2$-subgroups in pseudofinite $\\mathfrak{M}_c$ (in particular linear) groups under the assumption that there is at least one finite Sylow $2$-subgroup. We observe the importance of the pseudofiniteness assumption by analyzing an example of a linear group with non-conjugate finite Sylow $2$-subgroups which was constructed by Platonov.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":"41 1","pages":"1458-1466"},"PeriodicalIF":0.8000,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3906/mat-1604-11","citationCount":"2","resultStr":"{\"title\":\"A note on the conjugacy problem for finite Sylow subgroups of linear pseudofinite groups\",\"authors\":\"Pinar Uugurlu\",\"doi\":\"10.3906/mat-1604-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the conjugacy of Sylow $2$-subgroups in pseudofinite $\\\\mathfrak{M}_c$ (in particular linear) groups under the assumption that there is at least one finite Sylow $2$-subgroup. We observe the importance of the pseudofiniteness assumption by analyzing an example of a linear group with non-conjugate finite Sylow $2$-subgroups which was constructed by Platonov.\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":\"41 1\",\"pages\":\"1458-1466\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3906/mat-1604-11\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3906/mat-1604-11\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3906/mat-1604-11","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了拟有限$\mathfrak中Sylow$2$-子群的共轭性{M}_c$(特别是线性)群,假设存在至少一个有限Sylow$2$-子群。通过分析Platonov构造的具有非共轭有限Sylow$2$-子群的线性群的一个例子,我们观察到伪有限性假设的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the conjugacy problem for finite Sylow subgroups of linear pseudofinite groups
We prove the conjugacy of Sylow $2$-subgroups in pseudofinite $\mathfrak{M}_c$ (in particular linear) groups under the assumption that there is at least one finite Sylow $2$-subgroup. We observe the importance of the pseudofiniteness assumption by analyzing an example of a linear group with non-conjugate finite Sylow $2$-subgroups which was constructed by Platonov.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信