{"title":"任意图上的主内射莱维特路径代数","authors":"Soumitra Das, A. M. Buhphang","doi":"10.17265/2159-5291/2019.03.002","DOIUrl":null,"url":null,"abstract":"A ring R is called right principally-injective if every R-homomorphism from a principal right ideal aR to R (a in R), extends to R, or equivalently if every system of equations xa=b (a, b in R) is solvable in R. In this paper we show that for any arbitrary graph E and for a field K, principally-injective conditions for the Leavitt path algebra LK(E) are equivalent to that the graph E being acyclic. We also show that the principally injective Leavitt path algebras are precisely the von Neumann regular Leavitt path algebras.","PeriodicalId":61124,"journal":{"name":"数学和系统科学:英文版","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principally-Injective Leavitt Path Algebras over Arbitrary Graphs\",\"authors\":\"Soumitra Das, A. M. Buhphang\",\"doi\":\"10.17265/2159-5291/2019.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A ring R is called right principally-injective if every R-homomorphism from a principal right ideal aR to R (a in R), extends to R, or equivalently if every system of equations xa=b (a, b in R) is solvable in R. In this paper we show that for any arbitrary graph E and for a field K, principally-injective conditions for the Leavitt path algebra LK(E) are equivalent to that the graph E being acyclic. We also show that the principally injective Leavitt path algebras are precisely the von Neumann regular Leavitt path algebras.\",\"PeriodicalId\":61124,\"journal\":{\"name\":\"数学和系统科学:英文版\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学和系统科学:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.17265/2159-5291/2019.03.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学和系统科学:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.17265/2159-5291/2019.03.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
如果从主右理想aR到R (A in R)的所有R同态扩展到R,或者等价地,如果每个方程组xa=b (A, b in R)在R中可解,则称环R为右主内射。本文证明了对于任意图E和域K, Leavitt路径代数LK(E)的主内射条件等价于图E为无环。我们还证明了主内射莱维特路径代数正是冯诺依曼正则莱维特路径代数。
Principally-Injective Leavitt Path Algebras over Arbitrary Graphs
A ring R is called right principally-injective if every R-homomorphism from a principal right ideal aR to R (a in R), extends to R, or equivalently if every system of equations xa=b (a, b in R) is solvable in R. In this paper we show that for any arbitrary graph E and for a field K, principally-injective conditions for the Leavitt path algebra LK(E) are equivalent to that the graph E being acyclic. We also show that the principally injective Leavitt path algebras are precisely the von Neumann regular Leavitt path algebras.