任意图上的主内射莱维特路径代数

Soumitra Das, A. M. Buhphang
{"title":"任意图上的主内射莱维特路径代数","authors":"Soumitra Das, A. M. Buhphang","doi":"10.17265/2159-5291/2019.03.002","DOIUrl":null,"url":null,"abstract":"A ring R is called right principally-injective if every R-homomorphism from a principal right ideal aR to R (a in R), extends to R, or equivalently if every system of equations xa=b (a, b in R) is solvable in R. In this paper we show that for any arbitrary graph E and for a field K, principally-injective conditions for the Leavitt path algebra LK(E) are equivalent to that the graph E being acyclic. We also show that the principally injective Leavitt path algebras are precisely the von Neumann regular Leavitt path algebras.","PeriodicalId":61124,"journal":{"name":"数学和系统科学:英文版","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principally-Injective Leavitt Path Algebras over Arbitrary Graphs\",\"authors\":\"Soumitra Das, A. M. Buhphang\",\"doi\":\"10.17265/2159-5291/2019.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A ring R is called right principally-injective if every R-homomorphism from a principal right ideal aR to R (a in R), extends to R, or equivalently if every system of equations xa=b (a, b in R) is solvable in R. In this paper we show that for any arbitrary graph E and for a field K, principally-injective conditions for the Leavitt path algebra LK(E) are equivalent to that the graph E being acyclic. We also show that the principally injective Leavitt path algebras are precisely the von Neumann regular Leavitt path algebras.\",\"PeriodicalId\":61124,\"journal\":{\"name\":\"数学和系统科学:英文版\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学和系统科学:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.17265/2159-5291/2019.03.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学和系统科学:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.17265/2159-5291/2019.03.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果从主右理想aR到R (A in R)的所有R同态扩展到R,或者等价地,如果每个方程组xa=b (A, b in R)在R中可解,则称环R为右主内射。本文证明了对于任意图E和域K, Leavitt路径代数LK(E)的主内射条件等价于图E为无环。我们还证明了主内射莱维特路径代数正是冯诺依曼正则莱维特路径代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principally-Injective Leavitt Path Algebras over Arbitrary Graphs
A ring R is called right principally-injective if every R-homomorphism from a principal right ideal aR to R (a in R), extends to R, or equivalently if every system of equations xa=b (a, b in R) is solvable in R. In this paper we show that for any arbitrary graph E and for a field K, principally-injective conditions for the Leavitt path algebra LK(E) are equivalent to that the graph E being acyclic. We also show that the principally injective Leavitt path algebras are precisely the von Neumann regular Leavitt path algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
450
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信