三维Ginzburg–Landau模型的有界涡度和一个等通量问题

IF 1.5 1区 数学 Q1 MATHEMATICS
Carlos Rom'an, E. Sandier, S. Serfaty
{"title":"三维Ginzburg–Landau模型的有界涡度和一个等通量问题","authors":"Carlos Rom'an, E. Sandier, S. Serfaty","doi":"10.1112/plms.12505","DOIUrl":null,"url":null,"abstract":"We consider the full three‐dimensional Ginzburg–Landau model of superconductivity with applied magnetic field, in the regime where the intensity of the applied field is close to the ‘first critical field’ Hc1$H_{c_1}$ at which vortex filaments appear, and in the asymptotics of a small inverse Ginzburg–Landau parameter ε$\\varepsilon$ . This onset of vorticity is directly related to an ‘isoflux problem’ on curves (finding a curve that maximizes the ratio of a magnetic flux by its length), whose study was initiated in [22] and which we continue here. By assuming a nondegeneracy condition for this isoflux problem, which we show holds at least for instance in the case of a ball, we prove that if the intensity of the applied field remains below Hc1+Clog|logε|${H_{c_1}}+ C \\log {|\\log \\varepsilon |}$ , the total vorticity remains bounded independently of ε$\\varepsilon$ , with vortex lines concentrating near the maximizer of the isoflux problem, thus extending to the three‐dimensional setting a two‐dimensional result of [28]. We finish by showing an improved estimate on the value of Hc1${H_{c_1}}$ in some specific simple geometries.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"126 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bounded vorticity for the 3D Ginzburg–Landau model and an isoflux problem\",\"authors\":\"Carlos Rom'an, E. Sandier, S. Serfaty\",\"doi\":\"10.1112/plms.12505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the full three‐dimensional Ginzburg–Landau model of superconductivity with applied magnetic field, in the regime where the intensity of the applied field is close to the ‘first critical field’ Hc1$H_{c_1}$ at which vortex filaments appear, and in the asymptotics of a small inverse Ginzburg–Landau parameter ε$\\\\varepsilon$ . This onset of vorticity is directly related to an ‘isoflux problem’ on curves (finding a curve that maximizes the ratio of a magnetic flux by its length), whose study was initiated in [22] and which we continue here. By assuming a nondegeneracy condition for this isoflux problem, which we show holds at least for instance in the case of a ball, we prove that if the intensity of the applied field remains below Hc1+Clog|logε|${H_{c_1}}+ C \\\\log {|\\\\log \\\\varepsilon |}$ , the total vorticity remains bounded independently of ε$\\\\varepsilon$ , with vortex lines concentrating near the maximizer of the isoflux problem, thus extending to the three‐dimensional setting a two‐dimensional result of [28]. We finish by showing an improved estimate on the value of Hc1${H_{c_1}}$ in some specific simple geometries.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12505\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12505","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了具有外加磁场的超导电性的全三维Ginzburg–Landau模型,在外加磁场强度接近涡流丝出现的“第一临界场”Hc1$H_{c_1}$的情况下,以及在小的逆Ginzburg-Landau参数ε$\varepsilon$的渐近线中。涡度的出现与曲线上的“等通量问题”直接相关(找到一条使磁通量与其长度之比最大化的曲线),其研究始于[22],我们在此继续。通过假设这个等通量问题的非一般性条件,我们证明了,至少在球的情况下,如果施加场的强度保持在Hc1+Clog|logε|${H_{c_1}}+c\log{|\log\varepsilon|}$以下,则总涡度保持独立于ε$\varepsilion$的有界,涡线集中在等通量问题最大值附近,从而将[28]的二维结果扩展到三维设置。最后,我们展示了在一些特定的简单几何中对Hc1${H_{c_1}}$的值的改进估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounded vorticity for the 3D Ginzburg–Landau model and an isoflux problem
We consider the full three‐dimensional Ginzburg–Landau model of superconductivity with applied magnetic field, in the regime where the intensity of the applied field is close to the ‘first critical field’ Hc1$H_{c_1}$ at which vortex filaments appear, and in the asymptotics of a small inverse Ginzburg–Landau parameter ε$\varepsilon$ . This onset of vorticity is directly related to an ‘isoflux problem’ on curves (finding a curve that maximizes the ratio of a magnetic flux by its length), whose study was initiated in [22] and which we continue here. By assuming a nondegeneracy condition for this isoflux problem, which we show holds at least for instance in the case of a ball, we prove that if the intensity of the applied field remains below Hc1+Clog|logε|${H_{c_1}}+ C \log {|\log \varepsilon |}$ , the total vorticity remains bounded independently of ε$\varepsilon$ , with vortex lines concentrating near the maximizer of the isoflux problem, thus extending to the three‐dimensional setting a two‐dimensional result of [28]. We finish by showing an improved estimate on the value of Hc1${H_{c_1}}$ in some specific simple geometries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信