M. Nöthe, J. Trapp, A. Semenov, B. Kieback, T. Wallmersperger
{"title":"火花等离子体烧结的小型试验装置——实验和数值研究","authors":"M. Nöthe, J. Trapp, A. Semenov, B. Kieback, T. Wallmersperger","doi":"10.1080/00325899.2023.2219511","DOIUrl":null,"url":null,"abstract":"ABSTRACT Spark Plasma Sintering (SPS) is an innovative sintering technique, whereby many of the beneficial effects of this process on sintering are still elusive. To allow for the detailed investigations of the SPS process, a custom experimental set-up and a corresponding finite element (FE) model was developed. The miniaturised setup allows for very high current intensities, custom pulse patterns, a wide pressure range and dilatometric measurements. The FE model was employed to calculate the temperature field in the set-up and the sintering specimen itself. A very good correlation of the temperature, current and voltage over the entire process was observed. Our investigations show that the contact conductivities have a significant impact on the process temperature. Also, the imperfect contacts at the interfaces between the graphite foil and the real specimen may lead to a significant variance of the currents necessary to obtain the desired sintering temperature.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniaturised test-setup for Spark Plasma Sintering – experimental and numerical investigations\",\"authors\":\"M. Nöthe, J. Trapp, A. Semenov, B. Kieback, T. Wallmersperger\",\"doi\":\"10.1080/00325899.2023.2219511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Spark Plasma Sintering (SPS) is an innovative sintering technique, whereby many of the beneficial effects of this process on sintering are still elusive. To allow for the detailed investigations of the SPS process, a custom experimental set-up and a corresponding finite element (FE) model was developed. The miniaturised setup allows for very high current intensities, custom pulse patterns, a wide pressure range and dilatometric measurements. The FE model was employed to calculate the temperature field in the set-up and the sintering specimen itself. A very good correlation of the temperature, current and voltage over the entire process was observed. Our investigations show that the contact conductivities have a significant impact on the process temperature. Also, the imperfect contacts at the interfaces between the graphite foil and the real specimen may lead to a significant variance of the currents necessary to obtain the desired sintering temperature.\",\"PeriodicalId\":20392,\"journal\":{\"name\":\"Powder Metallurgy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00325899.2023.2219511\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2023.2219511","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Miniaturised test-setup for Spark Plasma Sintering – experimental and numerical investigations
ABSTRACT Spark Plasma Sintering (SPS) is an innovative sintering technique, whereby many of the beneficial effects of this process on sintering are still elusive. To allow for the detailed investigations of the SPS process, a custom experimental set-up and a corresponding finite element (FE) model was developed. The miniaturised setup allows for very high current intensities, custom pulse patterns, a wide pressure range and dilatometric measurements. The FE model was employed to calculate the temperature field in the set-up and the sintering specimen itself. A very good correlation of the temperature, current and voltage over the entire process was observed. Our investigations show that the contact conductivities have a significant impact on the process temperature. Also, the imperfect contacts at the interfaces between the graphite foil and the real specimen may lead to a significant variance of the currents necessary to obtain the desired sintering temperature.
期刊介绍:
Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.