揭示原始、缺陷和应变Ti2N MXene的电子结构、磁态和拓扑现象

Yogendra Limbu, G. C. Kaphle, Alok Lal Karn, N. Shah, D. Paudyal
{"title":"揭示原始、缺陷和应变Ti2N MXene的电子结构、磁态和拓扑现象","authors":"Yogendra Limbu, G. C. Kaphle, Alok Lal Karn, N. Shah, D. Paudyal","doi":"10.33774/chemrxiv-2021-90scj","DOIUrl":null,"url":null,"abstract":"We unravel the evolution of structural, electronic, magnetic, and topological properties of graphene-like pristine, defected, and strained titanium nitride MXene with different functional groups (-F, -O, -H, and -OH) employing first-principles calculations. The formation and cohesive energies reveal their chemical stability. The MAX phase and defect free functionalized MXenes are metallic in nature except for oxygen terminated one, which is 100% spin polarized half-metallic. Additionally, the bare MXene is nearly half-metallic ferromagnet. The spin-orbit coupling significantly influences the bare MXene possessing band inversion. The strain effect sways the Fermi level thereby shifting it toward lower energy state under compression and toward higher energy state under tensile strain in Ti2NH2. These properties are reversed in Ti2N, Ti2NF2, and Ti2N(OH)2. The half-metallic nature changes to semi-metallic under 1% compression and is completely destroyed under 2% compression. In single vacancy defect, the band structure of Ti2NO2 remarkably transforms from half-metallic to semi-conducting (with large band gap of 1.73 eV) in 12.5% Ti, weakly semi-conducting in 5.5% Ti, and topological semi-metal in 12.5% oxygen. The 25% N defect changes the half-metallic to the metallic with certain topological features. Further, the 12.5% Co substitution in Ti2NO2 preserves the half-metallic character, whereas Mn substitution allows to convert half-metallic into weak semi-metallic preserving ferromagnetic character. However, Cr substitution converts half-metallic ferromagnetic to half-metallic anti-ferromagnetic state. The understanding made here on collective structural stability, and magnetic and topological phenomena in novel 2D MXenes open up their possibility in designing them for synthesis and thereby taking to applications.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Electronic Structure, Magnetic States, and Topological Phenomena in Pristine, Defected, and Strained Ti2N MXene\",\"authors\":\"Yogendra Limbu, G. C. Kaphle, Alok Lal Karn, N. Shah, D. Paudyal\",\"doi\":\"10.33774/chemrxiv-2021-90scj\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We unravel the evolution of structural, electronic, magnetic, and topological properties of graphene-like pristine, defected, and strained titanium nitride MXene with different functional groups (-F, -O, -H, and -OH) employing first-principles calculations. The formation and cohesive energies reveal their chemical stability. The MAX phase and defect free functionalized MXenes are metallic in nature except for oxygen terminated one, which is 100% spin polarized half-metallic. Additionally, the bare MXene is nearly half-metallic ferromagnet. The spin-orbit coupling significantly influences the bare MXene possessing band inversion. The strain effect sways the Fermi level thereby shifting it toward lower energy state under compression and toward higher energy state under tensile strain in Ti2NH2. These properties are reversed in Ti2N, Ti2NF2, and Ti2N(OH)2. The half-metallic nature changes to semi-metallic under 1% compression and is completely destroyed under 2% compression. In single vacancy defect, the band structure of Ti2NO2 remarkably transforms from half-metallic to semi-conducting (with large band gap of 1.73 eV) in 12.5% Ti, weakly semi-conducting in 5.5% Ti, and topological semi-metal in 12.5% oxygen. The 25% N defect changes the half-metallic to the metallic with certain topological features. Further, the 12.5% Co substitution in Ti2NO2 preserves the half-metallic character, whereas Mn substitution allows to convert half-metallic into weak semi-metallic preserving ferromagnetic character. However, Cr substitution converts half-metallic ferromagnetic to half-metallic anti-ferromagnetic state. The understanding made here on collective structural stability, and magnetic and topological phenomena in novel 2D MXenes open up their possibility in designing them for synthesis and thereby taking to applications.\",\"PeriodicalId\":72565,\"journal\":{\"name\":\"ChemRxiv : the preprint server for chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv : the preprint server for chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33774/chemrxiv-2021-90scj\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-90scj","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们采用第一性原理计算,揭示了具有不同官能团(-F、-O、-H和-OH)的类石墨烯原始、缺陷和应变氮化钛MXene的结构、电子、磁性和拓扑性质的演变。形成能和内聚能揭示了它们的化学稳定性。MAX相和无缺陷的官能化MXenes本质上是金属的,除了氧封端的MXenes,其是100%自旋极化的半金属的。此外,裸露的MXene几乎是金属铁磁体的一半。自旋-轨道耦合显著影响具有能带反转的裸MXene。应变效应使费米能级发生摆动,从而使其在Ti2NH2中在压缩下向较低能态移动,在拉伸应变下向较高能态移动。这些性质在Ti2N、Ti2NF2和Ti2N(OH)2中是相反的。半金属性质在1%压缩下变为半金属性质,在2%压缩下完全破坏。在单空位缺陷中,Ti2NO2的能带结构在12.5%的Ti中显著地从半金属转变为半导电(具有1.73eV的大带隙),在5.5%的Ti中为弱半导电,在12.5%的氧中为拓扑半金属。25%N缺陷使半金属变为具有某些拓扑特征的金属。此外,Ti2NO2中12.5%的Co取代保留了半金属性质,而Mn取代允许将半金属转化为弱的半金属保留铁磁性质。然而,Cr取代将半金属铁磁状态转换为半金属反铁磁状态。本文对新型2D MXenes中的集体结构稳定性以及磁性和拓扑现象的理解为设计它们进行合成并应用开辟了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling Electronic Structure, Magnetic States, and Topological Phenomena in Pristine, Defected, and Strained Ti2N MXene
We unravel the evolution of structural, electronic, magnetic, and topological properties of graphene-like pristine, defected, and strained titanium nitride MXene with different functional groups (-F, -O, -H, and -OH) employing first-principles calculations. The formation and cohesive energies reveal their chemical stability. The MAX phase and defect free functionalized MXenes are metallic in nature except for oxygen terminated one, which is 100% spin polarized half-metallic. Additionally, the bare MXene is nearly half-metallic ferromagnet. The spin-orbit coupling significantly influences the bare MXene possessing band inversion. The strain effect sways the Fermi level thereby shifting it toward lower energy state under compression and toward higher energy state under tensile strain in Ti2NH2. These properties are reversed in Ti2N, Ti2NF2, and Ti2N(OH)2. The half-metallic nature changes to semi-metallic under 1% compression and is completely destroyed under 2% compression. In single vacancy defect, the band structure of Ti2NO2 remarkably transforms from half-metallic to semi-conducting (with large band gap of 1.73 eV) in 12.5% Ti, weakly semi-conducting in 5.5% Ti, and topological semi-metal in 12.5% oxygen. The 25% N defect changes the half-metallic to the metallic with certain topological features. Further, the 12.5% Co substitution in Ti2NO2 preserves the half-metallic character, whereas Mn substitution allows to convert half-metallic into weak semi-metallic preserving ferromagnetic character. However, Cr substitution converts half-metallic ferromagnetic to half-metallic anti-ferromagnetic state. The understanding made here on collective structural stability, and magnetic and topological phenomena in novel 2D MXenes open up their possibility in designing them for synthesis and thereby taking to applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信