poincarcarr对偶和Langlands对偶扩展了仿射Weyl群

IF 0.5 Q3 MATHEMATICS
Graham A. Niblo, R. Plymen, N. Wright
{"title":"poincarcarr对偶和Langlands对偶扩展了仿射Weyl群","authors":"Graham A. Niblo, R. Plymen, N. Wright","doi":"10.2140/AKT.2018.3.491","DOIUrl":null,"url":null,"abstract":"In this paper we construct an equivariant Poincar\\'e duality between dual tori equipped with finite group actions. We use this to demonstrate that Langlands duality induces a rational isomorphism between the group $C^*$-algebras of extended affine Weyl groups at the level of $K$-theory.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2017-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/AKT.2018.3.491","citationCount":"4","resultStr":"{\"title\":\"Poincaré duality and Langlands duality for\\nextended affine Weyl groups\",\"authors\":\"Graham A. Niblo, R. Plymen, N. Wright\",\"doi\":\"10.2140/AKT.2018.3.491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we construct an equivariant Poincar\\\\'e duality between dual tori equipped with finite group actions. We use this to demonstrate that Langlands duality induces a rational isomorphism between the group $C^*$-algebras of extended affine Weyl groups at the level of $K$-theory.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/AKT.2018.3.491\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/AKT.2018.3.491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AKT.2018.3.491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文构造了具有有限群作用的对偶环面之间的等变Poincar对偶。我们用它来证明Langlands对偶在$K$-理论的水平上诱导了扩展仿射Weyl群的群$C^*$-代数之间的有理同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poincaré duality and Langlands duality for extended affine Weyl groups
In this paper we construct an equivariant Poincar\'e duality between dual tori equipped with finite group actions. We use this to demonstrate that Langlands duality induces a rational isomorphism between the group $C^*$-algebras of extended affine Weyl groups at the level of $K$-theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信