{"title":"带坡度选择的分子束外延生长模型的Hessian恢复线性有限元法","authors":"","doi":"10.4208/aamm.oa-2021-0193","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":54384,"journal":{"name":"Advances in Applied Mathematics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Hessian Recovery Based Linear Finite Element Method for Molecular Beam Epitaxy Growth Model with Slope Selection\",\"authors\":\"\",\"doi\":\"10.4208/aamm.oa-2021-0193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":54384,\"journal\":{\"name\":\"Advances in Applied Mathematics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4208/aamm.oa-2021-0193\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4208/aamm.oa-2021-0193","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
期刊介绍:
Advances in Applied Mathematics and Mechanics (AAMM) provides a fast communication platform among researchers using mathematics as a tool for solving problems in mechanics and engineering, with particular emphasis in the integration of theory and applications. To cover as wide audiences as possible, abstract or axiomatic mathematics is not encouraged. Innovative numerical analysis, numerical methods, and interdisciplinary applications are particularly welcome.