非交换霍奇猜想

IF 0.7 2区 数学 Q2 MATHEMATICS
Xun Lin
{"title":"非交换霍奇猜想","authors":"Xun Lin","doi":"10.4171/jncg/517","DOIUrl":null,"url":null,"abstract":"The paper provides a version of the rational Hodge conjecture for $\\3\\dg$ categories. The noncommutative Hodge conjecture is equivalent to the version proposed in \\cite{perry2020integral} for admissible subcategories. We obtain examples of evidence of the Hodge conjecture by techniques of noncommutative geometry. Finally, we show that the noncommutative Hodge conjecture for smooth proper connective $\\3\\dg$ algebras is true.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Noncommutative Hodge conjecture\",\"authors\":\"Xun Lin\",\"doi\":\"10.4171/jncg/517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper provides a version of the rational Hodge conjecture for $\\\\3\\\\dg$ categories. The noncommutative Hodge conjecture is equivalent to the version proposed in \\\\cite{perry2020integral} for admissible subcategories. We obtain examples of evidence of the Hodge conjecture by techniques of noncommutative geometry. Finally, we show that the noncommutative Hodge conjecture for smooth proper connective $\\\\3\\\\dg$ algebras is true.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/517\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/517","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文给出了$\3\dg$类的有理Hodge猜想的一个版本。非交换霍奇猜想等价于\cite{perry2020integral}中提出的关于可容许子范畴的版本。我们用非交换几何的方法得到了霍奇猜想的证据实例。最后,我们证明了光滑固有连接$\3\dg$代数的非交换Hodge猜想是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncommutative Hodge conjecture
The paper provides a version of the rational Hodge conjecture for $\3\dg$ categories. The noncommutative Hodge conjecture is equivalent to the version proposed in \cite{perry2020integral} for admissible subcategories. We obtain examples of evidence of the Hodge conjecture by techniques of noncommutative geometry. Finally, we show that the noncommutative Hodge conjecture for smooth proper connective $\3\dg$ algebras is true.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信