{"title":"Tesseract光学字符识别用于检测键帽错位的自动光学检测","authors":"Anisatul Munawaroh, E. Jamzuri","doi":"10.11591/ijece.v13i5.pp5147-5155","DOIUrl":null,"url":null,"abstract":"This research study aims to develop automatic optical inspection (AOI) for detecting keycaps misplacement on the keyboard. The AOI hardware has been designed using an industrial camera with an additional mechanical jig and lighting system. Optical character recognition (OCR) using the Tesseract OCR engine is the proposed method to detect keycaps misplacement. In addition, captured images were cropped using a predefined region of interest (ROI) during the setup. Subsequently, the cropped ROIs were processed to acquire binary images. Furthermore, Tesseract processed these binary images to recognize the text on the keycaps. Keycaps misplacement could be identified by comparing the predicted text with the actual text on the golden sample. Experiments on 25 defects and 25 non-defected samples provided a classification accuracy of 97.34%, a precision of 100%, and a recall of 90.70%. Meanwhile, the character error rate (CER) obtained from the test on a total of 57 characters provided a performance of 10.53%. This outcome has implications for developing AOI for various keyboard products. In addition, the precision level of 100% signifies that the proposed method always offers correct results in detecting product defects. Such outcomes are critical in industrial applications to prevent defective products from circulating in the market.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition\",\"authors\":\"Anisatul Munawaroh, E. Jamzuri\",\"doi\":\"10.11591/ijece.v13i5.pp5147-5155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research study aims to develop automatic optical inspection (AOI) for detecting keycaps misplacement on the keyboard. The AOI hardware has been designed using an industrial camera with an additional mechanical jig and lighting system. Optical character recognition (OCR) using the Tesseract OCR engine is the proposed method to detect keycaps misplacement. In addition, captured images were cropped using a predefined region of interest (ROI) during the setup. Subsequently, the cropped ROIs were processed to acquire binary images. Furthermore, Tesseract processed these binary images to recognize the text on the keycaps. Keycaps misplacement could be identified by comparing the predicted text with the actual text on the golden sample. Experiments on 25 defects and 25 non-defected samples provided a classification accuracy of 97.34%, a precision of 100%, and a recall of 90.70%. Meanwhile, the character error rate (CER) obtained from the test on a total of 57 characters provided a performance of 10.53%. This outcome has implications for developing AOI for various keyboard products. In addition, the precision level of 100% signifies that the proposed method always offers correct results in detecting product defects. Such outcomes are critical in industrial applications to prevent defective products from circulating in the market.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5147-5155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5147-5155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition
This research study aims to develop automatic optical inspection (AOI) for detecting keycaps misplacement on the keyboard. The AOI hardware has been designed using an industrial camera with an additional mechanical jig and lighting system. Optical character recognition (OCR) using the Tesseract OCR engine is the proposed method to detect keycaps misplacement. In addition, captured images were cropped using a predefined region of interest (ROI) during the setup. Subsequently, the cropped ROIs were processed to acquire binary images. Furthermore, Tesseract processed these binary images to recognize the text on the keycaps. Keycaps misplacement could be identified by comparing the predicted text with the actual text on the golden sample. Experiments on 25 defects and 25 non-defected samples provided a classification accuracy of 97.34%, a precision of 100%, and a recall of 90.70%. Meanwhile, the character error rate (CER) obtained from the test on a total of 57 characters provided a performance of 10.53%. This outcome has implications for developing AOI for various keyboard products. In addition, the precision level of 100% signifies that the proposed method always offers correct results in detecting product defects. Such outcomes are critical in industrial applications to prevent defective products from circulating in the market.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]