TiO2/CMK-3光催化剂在中压紫外灯下光降解苯酚的研究

Q4 Environmental Science
A. Rahmani, H. Rahimzadeh, Somayeh Beirami
{"title":"TiO2/CMK-3光催化剂在中压紫外灯下光降解苯酚的研究","authors":"A. Rahmani, H. Rahimzadeh, Somayeh Beirami","doi":"10.15171/AJEHE.2018.05","DOIUrl":null,"url":null,"abstract":"Phenol is considered as one of the major environmental concerns due to its characteristics including chronic toxicity, biological stability, and increasing the toxicological intermediates after biological degradation. Therefore, the aim of this study was to evaluate the photo-degradation of phenol using the titanium dioxide (TiO2) photo-catalyst on ordered mesoporous carbon (CMK-3) support under UV irradiation. In this study, the effects of some parameters including pH value (4, 5, 6, 7, 8, 9, 10), TiO2/CMK-3 concentration (0.05, 0.1, 0.15, 0.3, 0.5 g/L), irradiation time (30, 60, 90, 120, 150 min), and phenol concentration (50, 100, 150 and 200 mg/L) were assessed. The properties of the CMK-3 and TiO2/CMK-3 were compared using the transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and N2 adsorption-desorption isotherm. The results revealed that the process studied was remarkably affected by the parameters, and the optimum values of the parameters were as follows: pH=6, TiO2/CMK-3 concentration =0.15 g/L, phenol concentration = 100 mg/L, and irradiation time=150 min. The phenol degradation efficiency and total organic carbon (TOC) removal efficiency for phenol were 96% and 74%, respectively. Moreover, the stability greater than 7 times for the studied photo-catalyst was indicative of its high potential to be used in photo-degradation processes for the elimination of pollutants.","PeriodicalId":8672,"journal":{"name":"Avicenna Journal of Environmental Health Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Photo-Degradation of Phenol Using TiO2/CMK-3 Photo-Catalyst Under Medium Pressure UV Lamp\",\"authors\":\"A. Rahmani, H. Rahimzadeh, Somayeh Beirami\",\"doi\":\"10.15171/AJEHE.2018.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phenol is considered as one of the major environmental concerns due to its characteristics including chronic toxicity, biological stability, and increasing the toxicological intermediates after biological degradation. Therefore, the aim of this study was to evaluate the photo-degradation of phenol using the titanium dioxide (TiO2) photo-catalyst on ordered mesoporous carbon (CMK-3) support under UV irradiation. In this study, the effects of some parameters including pH value (4, 5, 6, 7, 8, 9, 10), TiO2/CMK-3 concentration (0.05, 0.1, 0.15, 0.3, 0.5 g/L), irradiation time (30, 60, 90, 120, 150 min), and phenol concentration (50, 100, 150 and 200 mg/L) were assessed. The properties of the CMK-3 and TiO2/CMK-3 were compared using the transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and N2 adsorption-desorption isotherm. The results revealed that the process studied was remarkably affected by the parameters, and the optimum values of the parameters were as follows: pH=6, TiO2/CMK-3 concentration =0.15 g/L, phenol concentration = 100 mg/L, and irradiation time=150 min. The phenol degradation efficiency and total organic carbon (TOC) removal efficiency for phenol were 96% and 74%, respectively. Moreover, the stability greater than 7 times for the studied photo-catalyst was indicative of its high potential to be used in photo-degradation processes for the elimination of pollutants.\",\"PeriodicalId\":8672,\"journal\":{\"name\":\"Avicenna Journal of Environmental Health Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avicenna Journal of Environmental Health Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15171/AJEHE.2018.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna Journal of Environmental Health Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15171/AJEHE.2018.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3

摘要

苯酚因其具有慢性毒性、生物稳定性和生物降解后毒性中间体增加等特点而被认为是主要的环境问题之一。因此,本研究的目的是评价在紫外光照射下,二氧化钛(TiO2)光催化剂在有序介孔碳(CMK-3)载体上光降解苯酚的效果。研究了pH值(4、5、6、7、8、9、10)、TiO2/CMK-3浓度(0.05、0.1、0.15、0.3、0.5 g/L)、辐照时间(30、60、90、120、150 min)和苯酚浓度(50、100、150、200 mg/L)等参数的影响。采用透射电镜(TEM)、x射线粉末衍射(XRD)和N2吸附-脱附等温线对CMK-3和TiO2/CMK-3的性能进行了比较。结果表明,工艺条件对工艺影响较大,最佳工艺条件为pH=6, TiO2/CMK-3浓度=0.15 g/L,苯酚浓度= 100 mg/L,辐照时间=150 min,苯酚的降解效率为96%,总有机碳(TOC)去除率为74%。此外,所研究的光催化剂的稳定性大于7倍,表明其在消除污染物的光降解过程中具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photo-Degradation of Phenol Using TiO2/CMK-3 Photo-Catalyst Under Medium Pressure UV Lamp
Phenol is considered as one of the major environmental concerns due to its characteristics including chronic toxicity, biological stability, and increasing the toxicological intermediates after biological degradation. Therefore, the aim of this study was to evaluate the photo-degradation of phenol using the titanium dioxide (TiO2) photo-catalyst on ordered mesoporous carbon (CMK-3) support under UV irradiation. In this study, the effects of some parameters including pH value (4, 5, 6, 7, 8, 9, 10), TiO2/CMK-3 concentration (0.05, 0.1, 0.15, 0.3, 0.5 g/L), irradiation time (30, 60, 90, 120, 150 min), and phenol concentration (50, 100, 150 and 200 mg/L) were assessed. The properties of the CMK-3 and TiO2/CMK-3 were compared using the transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and N2 adsorption-desorption isotherm. The results revealed that the process studied was remarkably affected by the parameters, and the optimum values of the parameters were as follows: pH=6, TiO2/CMK-3 concentration =0.15 g/L, phenol concentration = 100 mg/L, and irradiation time=150 min. The phenol degradation efficiency and total organic carbon (TOC) removal efficiency for phenol were 96% and 74%, respectively. Moreover, the stability greater than 7 times for the studied photo-catalyst was indicative of its high potential to be used in photo-degradation processes for the elimination of pollutants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Avicenna Journal of Environmental Health Engineering
Avicenna Journal of Environmental Health Engineering Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
1.00
自引率
0.00%
发文量
8
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信