Fangni Zhou, Huafang Chen, Dan Shan, Yuxia Wu, Qian Chen, Yayi Hu
{"title":"葡萄糖转运蛋白1型、toll样受体4和核因子κ B在雌激素诱导的胆汁淤积妊娠大鼠胎盘缺血再灌注应激中的肝脏表达异常","authors":"Fangni Zhou, Huafang Chen, Dan Shan, Yuxia Wu, Qian Chen, Yayi Hu","doi":"10.1097/FM9.0000000000000079","DOIUrl":null,"url":null,"abstract":"Abstract Objective: This study aimed at investigating the expression of nuclear factor kappa B (NF-κB) and mammalian target of rapamycin (mTOR) related signal pathways in liver tissues of intrahepatic cholestasis of pregnancy animal models. Methods: Estrogen (EE)-induced cholestasis and a placental ischemia-reperfusion (IR) model were established in pregnant rats. All pregnant rats were divided into four groups by random number table: EE-IR group (n = 6), EE-sham group (n = 6), control-IR group (n = 6) and control-sham group (n = 6). Liver expression of mTOR, its upstream regulator DNA damage response-1 (REDD1), and downstream factor glucose transporter type-1 (GLUT1), accompanied by NF-κB (p65 is the most important component), its activator toll-like receptor 4 (TLR4), and inhibitor IκBα, were detected by western blot analysis and real-time polymerase chain reaction. The intergroup comparisons were performed with a one-way analysis of variance, the comparisons among groups were analyzed with the nonparametric Kruskal-Wallis test. Results: Giving pregnant rats EE alone reduced the hepatic expression of IκBα (0.72 ± 0.20 vs. 1.01 ± 0.07, P = 0.008). Meanwhile, giving pregnant rats placental IR alone increased liver levels of REDD1 (3.24 ± 0.98 vs. 1.06 ± 0.24, P = 0.025), GLUT1 (2.37 ± 0.82 vs. 1.09 ± 0.10, P = 0.039), TLR4 (2.12 ± 0.29 vs. 1.20 ± 0.28, P = 0.010), and p65 (2.09 ± 0.85 vs. 1.04 ± 0.06, P = 0.023), and decreased hepatic mTOR (0.50 ± 0.07 vs. 1.01 ± 0.03, P = 0.001) and IκBα (0.61 ± 0.08 vs. 1.01 ± 0.07, P = 0.014) expression. Subjecting EE-treated rats to placental IR did not further alter liver levels of GLUT1 (2.02 ± 0.45 vs. 1.79 ± 0.39, P = 0.240), TLR4 (2.10 ± 0.74 vs. 1.60 ± 0.36, P = 0.129), or p65 (2.41 ± 0.83 vs. 1.65 ± 0.46, P = 0.145), whereas it did decrease hepatic mTOR (0.42 ± 0.09 vs. 0.90 ± 0.14, P = 0.008) and IκBα (0.43 ± 0.09 vs. 0.72 ± 0.20, P = 0.004) expression and enhance REDD1 expression (4.46 ± 0.65 vs. 2.05 ± 0.47, P = 0.009). Placental IR stress did impact the hepatic expression of REDD1-mTOR-GLUT1 and TLR4/NF-κB/IκBα in pregnant rats. Conclusion: Placental IR-induced hepatic GLUT1, TLR4, and p65 alternation, which responded efficiently in control rats, were impaired in EE-induced ICP rats.","PeriodicalId":74121,"journal":{"name":"Maternal-fetal medicine (Wolters Kluwer Health, Inc.)","volume":"4 1","pages":"17 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dysregulated Hepatic Expression of Glucose Transporter Type-1, Toll-Like Receptor 4, and Nuclear Factor Kappa B in Estrogen-Induced Cholestasis Pregnant Rats with Placental Ischemia-Reperfusion Stress\",\"authors\":\"Fangni Zhou, Huafang Chen, Dan Shan, Yuxia Wu, Qian Chen, Yayi Hu\",\"doi\":\"10.1097/FM9.0000000000000079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objective: This study aimed at investigating the expression of nuclear factor kappa B (NF-κB) and mammalian target of rapamycin (mTOR) related signal pathways in liver tissues of intrahepatic cholestasis of pregnancy animal models. Methods: Estrogen (EE)-induced cholestasis and a placental ischemia-reperfusion (IR) model were established in pregnant rats. All pregnant rats were divided into four groups by random number table: EE-IR group (n = 6), EE-sham group (n = 6), control-IR group (n = 6) and control-sham group (n = 6). Liver expression of mTOR, its upstream regulator DNA damage response-1 (REDD1), and downstream factor glucose transporter type-1 (GLUT1), accompanied by NF-κB (p65 is the most important component), its activator toll-like receptor 4 (TLR4), and inhibitor IκBα, were detected by western blot analysis and real-time polymerase chain reaction. The intergroup comparisons were performed with a one-way analysis of variance, the comparisons among groups were analyzed with the nonparametric Kruskal-Wallis test. Results: Giving pregnant rats EE alone reduced the hepatic expression of IκBα (0.72 ± 0.20 vs. 1.01 ± 0.07, P = 0.008). Meanwhile, giving pregnant rats placental IR alone increased liver levels of REDD1 (3.24 ± 0.98 vs. 1.06 ± 0.24, P = 0.025), GLUT1 (2.37 ± 0.82 vs. 1.09 ± 0.10, P = 0.039), TLR4 (2.12 ± 0.29 vs. 1.20 ± 0.28, P = 0.010), and p65 (2.09 ± 0.85 vs. 1.04 ± 0.06, P = 0.023), and decreased hepatic mTOR (0.50 ± 0.07 vs. 1.01 ± 0.03, P = 0.001) and IκBα (0.61 ± 0.08 vs. 1.01 ± 0.07, P = 0.014) expression. Subjecting EE-treated rats to placental IR did not further alter liver levels of GLUT1 (2.02 ± 0.45 vs. 1.79 ± 0.39, P = 0.240), TLR4 (2.10 ± 0.74 vs. 1.60 ± 0.36, P = 0.129), or p65 (2.41 ± 0.83 vs. 1.65 ± 0.46, P = 0.145), whereas it did decrease hepatic mTOR (0.42 ± 0.09 vs. 0.90 ± 0.14, P = 0.008) and IκBα (0.43 ± 0.09 vs. 0.72 ± 0.20, P = 0.004) expression and enhance REDD1 expression (4.46 ± 0.65 vs. 2.05 ± 0.47, P = 0.009). Placental IR stress did impact the hepatic expression of REDD1-mTOR-GLUT1 and TLR4/NF-κB/IκBα in pregnant rats. Conclusion: Placental IR-induced hepatic GLUT1, TLR4, and p65 alternation, which responded efficiently in control rats, were impaired in EE-induced ICP rats.\",\"PeriodicalId\":74121,\"journal\":{\"name\":\"Maternal-fetal medicine (Wolters Kluwer Health, Inc.)\",\"volume\":\"4 1\",\"pages\":\"17 - 23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maternal-fetal medicine (Wolters Kluwer Health, Inc.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/FM9.0000000000000079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maternal-fetal medicine (Wolters Kluwer Health, Inc.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/FM9.0000000000000079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dysregulated Hepatic Expression of Glucose Transporter Type-1, Toll-Like Receptor 4, and Nuclear Factor Kappa B in Estrogen-Induced Cholestasis Pregnant Rats with Placental Ischemia-Reperfusion Stress
Abstract Objective: This study aimed at investigating the expression of nuclear factor kappa B (NF-κB) and mammalian target of rapamycin (mTOR) related signal pathways in liver tissues of intrahepatic cholestasis of pregnancy animal models. Methods: Estrogen (EE)-induced cholestasis and a placental ischemia-reperfusion (IR) model were established in pregnant rats. All pregnant rats were divided into four groups by random number table: EE-IR group (n = 6), EE-sham group (n = 6), control-IR group (n = 6) and control-sham group (n = 6). Liver expression of mTOR, its upstream regulator DNA damage response-1 (REDD1), and downstream factor glucose transporter type-1 (GLUT1), accompanied by NF-κB (p65 is the most important component), its activator toll-like receptor 4 (TLR4), and inhibitor IκBα, were detected by western blot analysis and real-time polymerase chain reaction. The intergroup comparisons were performed with a one-way analysis of variance, the comparisons among groups were analyzed with the nonparametric Kruskal-Wallis test. Results: Giving pregnant rats EE alone reduced the hepatic expression of IκBα (0.72 ± 0.20 vs. 1.01 ± 0.07, P = 0.008). Meanwhile, giving pregnant rats placental IR alone increased liver levels of REDD1 (3.24 ± 0.98 vs. 1.06 ± 0.24, P = 0.025), GLUT1 (2.37 ± 0.82 vs. 1.09 ± 0.10, P = 0.039), TLR4 (2.12 ± 0.29 vs. 1.20 ± 0.28, P = 0.010), and p65 (2.09 ± 0.85 vs. 1.04 ± 0.06, P = 0.023), and decreased hepatic mTOR (0.50 ± 0.07 vs. 1.01 ± 0.03, P = 0.001) and IκBα (0.61 ± 0.08 vs. 1.01 ± 0.07, P = 0.014) expression. Subjecting EE-treated rats to placental IR did not further alter liver levels of GLUT1 (2.02 ± 0.45 vs. 1.79 ± 0.39, P = 0.240), TLR4 (2.10 ± 0.74 vs. 1.60 ± 0.36, P = 0.129), or p65 (2.41 ± 0.83 vs. 1.65 ± 0.46, P = 0.145), whereas it did decrease hepatic mTOR (0.42 ± 0.09 vs. 0.90 ± 0.14, P = 0.008) and IκBα (0.43 ± 0.09 vs. 0.72 ± 0.20, P = 0.004) expression and enhance REDD1 expression (4.46 ± 0.65 vs. 2.05 ± 0.47, P = 0.009). Placental IR stress did impact the hepatic expression of REDD1-mTOR-GLUT1 and TLR4/NF-κB/IκBα in pregnant rats. Conclusion: Placental IR-induced hepatic GLUT1, TLR4, and p65 alternation, which responded efficiently in control rats, were impaired in EE-induced ICP rats.