Mingjun Dai;Ziying Zheng;Zhaoyan Hong;Shengli Zhang;Hui Wang
{"title":"边缘计算辅助编码垂直联邦线性回归","authors":"Mingjun Dai;Ziying Zheng;Zhaoyan Hong;Shengli Zhang;Hui Wang","doi":"10.1109/TCCN.2022.3174615","DOIUrl":null,"url":null,"abstract":"For the training process of federated linear regression (FLR), which is the simplest form of federated learning, the integrated computation at each company is slowed down either by huge volume data or by time-consuming homomorphic encryption. Targetted at accelerating the training process of FLR, through the incorporation of edge computing aided coded distributed computing (CDC) into intensive computation (matrix multiplication), a novel coded FLR framework is proposed where several edge nodes aid the computing of one company. Two schemes, including linear combination (LC)-based vertical FLR and Matdot-based vertical FLR, are proposed and designed, which enjoy in-parallel computation and homomorphic encryption at the edge nodes. Since workload at each edge node is reduced significantly, the training runtime of these two schemes may be reduced significantly. Numerical studies show that our proposed coded schemes outperform traditional uncoded schemes significantly in terms of overall runtime (sum of encoding, computing, and decoding phases) of the training process. Besides, among the two proposed coded schemes, LC-based scheme and Matdot-based scheme each has its own advantage scenarios which conforms with the analysis.","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"8 3","pages":"1543-1551"},"PeriodicalIF":7.4000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Edge Computing-Aided Coded Vertical Federated Linear Regression\",\"authors\":\"Mingjun Dai;Ziying Zheng;Zhaoyan Hong;Shengli Zhang;Hui Wang\",\"doi\":\"10.1109/TCCN.2022.3174615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the training process of federated linear regression (FLR), which is the simplest form of federated learning, the integrated computation at each company is slowed down either by huge volume data or by time-consuming homomorphic encryption. Targetted at accelerating the training process of FLR, through the incorporation of edge computing aided coded distributed computing (CDC) into intensive computation (matrix multiplication), a novel coded FLR framework is proposed where several edge nodes aid the computing of one company. Two schemes, including linear combination (LC)-based vertical FLR and Matdot-based vertical FLR, are proposed and designed, which enjoy in-parallel computation and homomorphic encryption at the edge nodes. Since workload at each edge node is reduced significantly, the training runtime of these two schemes may be reduced significantly. Numerical studies show that our proposed coded schemes outperform traditional uncoded schemes significantly in terms of overall runtime (sum of encoding, computing, and decoding phases) of the training process. Besides, among the two proposed coded schemes, LC-based scheme and Matdot-based scheme each has its own advantage scenarios which conforms with the analysis.\",\"PeriodicalId\":13069,\"journal\":{\"name\":\"IEEE Transactions on Cognitive Communications and Networking\",\"volume\":\"8 3\",\"pages\":\"1543-1551\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2022-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9773341/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9773341/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Edge Computing-Aided Coded Vertical Federated Linear Regression
For the training process of federated linear regression (FLR), which is the simplest form of federated learning, the integrated computation at each company is slowed down either by huge volume data or by time-consuming homomorphic encryption. Targetted at accelerating the training process of FLR, through the incorporation of edge computing aided coded distributed computing (CDC) into intensive computation (matrix multiplication), a novel coded FLR framework is proposed where several edge nodes aid the computing of one company. Two schemes, including linear combination (LC)-based vertical FLR and Matdot-based vertical FLR, are proposed and designed, which enjoy in-parallel computation and homomorphic encryption at the edge nodes. Since workload at each edge node is reduced significantly, the training runtime of these two schemes may be reduced significantly. Numerical studies show that our proposed coded schemes outperform traditional uncoded schemes significantly in terms of overall runtime (sum of encoding, computing, and decoding phases) of the training process. Besides, among the two proposed coded schemes, LC-based scheme and Matdot-based scheme each has its own advantage scenarios which conforms with the analysis.
期刊介绍:
The IEEE Transactions on Cognitive Communications and Networking (TCCN) aims to publish high-quality manuscripts that push the boundaries of cognitive communications and networking research. Cognitive, in this context, refers to the application of perception, learning, reasoning, memory, and adaptive approaches in communication system design. The transactions welcome submissions that explore various aspects of cognitive communications and networks, focusing on innovative and holistic approaches to complex system design. Key topics covered include architecture, protocols, cross-layer design, and cognition cycle design for cognitive networks. Additionally, research on machine learning, artificial intelligence, end-to-end and distributed intelligence, software-defined networking, cognitive radios, spectrum sharing, and security and privacy issues in cognitive networks are of interest. The publication also encourages papers addressing novel services and applications enabled by these cognitive concepts.