利用非线性技术进行特征修正的模式识别

IF 0.3 Q4 ENGINEERING, MULTIDISCIPLINARY
F. Mesa, R. Ospina-Ospina, D. M. Devia-Narvaez
{"title":"利用非线性技术进行特征修正的模式识别","authors":"F. Mesa, R. Ospina-Ospina, D. M. Devia-Narvaez","doi":"10.18273/revuin.v22n1-2023002","DOIUrl":null,"url":null,"abstract":"Traditional data processing applications are unsuitable for handling large amounts of data. To achieve an efficient manipulation and extraction of characteristics or samples that the information represents, it is necessary to know aspects such as data collection and treatment. In this document, a database corresponding to the behavior of electrical energy consumption in a residential load was refined. The debugging and statistical analysis of the samples were carried out using the principal component analysis. The training of the smallest data set to the original database was made using vector support machine techniques and artificial neural networks. Finally, a proposal is presented for the analysis of samples that are within the operating limits or not using updating dynamic patterns for the unsupervised validation of new samples.","PeriodicalId":42183,"journal":{"name":"UIS Ingenierias","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern recognition for the modification of characteristics using non-linear techniques\",\"authors\":\"F. Mesa, R. Ospina-Ospina, D. M. Devia-Narvaez\",\"doi\":\"10.18273/revuin.v22n1-2023002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional data processing applications are unsuitable for handling large amounts of data. To achieve an efficient manipulation and extraction of characteristics or samples that the information represents, it is necessary to know aspects such as data collection and treatment. In this document, a database corresponding to the behavior of electrical energy consumption in a residential load was refined. The debugging and statistical analysis of the samples were carried out using the principal component analysis. The training of the smallest data set to the original database was made using vector support machine techniques and artificial neural networks. Finally, a proposal is presented for the analysis of samples that are within the operating limits or not using updating dynamic patterns for the unsupervised validation of new samples.\",\"PeriodicalId\":42183,\"journal\":{\"name\":\"UIS Ingenierias\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UIS Ingenierias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revuin.v22n1-2023002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UIS Ingenierias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revuin.v22n1-2023002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的数据处理应用程序不适合处理大量数据。为了实现对信息所代表的特征或样本的有效操作和提取,有必要了解数据收集和处理等方面。在本文件中,完善了与住宅负荷中的电能消耗行为相对应的数据库。采用主成分分析法对样品进行了调试和统计分析。使用向量支持机技术和人工神经网络将最小数据集训练到原始数据库中。最后,提出了一个建议,用于分析在操作限制内或不使用更新动态模式对新样本进行无监督验证的样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern recognition for the modification of characteristics using non-linear techniques
Traditional data processing applications are unsuitable for handling large amounts of data. To achieve an efficient manipulation and extraction of characteristics or samples that the information represents, it is necessary to know aspects such as data collection and treatment. In this document, a database corresponding to the behavior of electrical energy consumption in a residential load was refined. The debugging and statistical analysis of the samples were carried out using the principal component analysis. The training of the smallest data set to the original database was made using vector support machine techniques and artificial neural networks. Finally, a proposal is presented for the analysis of samples that are within the operating limits or not using updating dynamic patterns for the unsupervised validation of new samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
UIS Ingenierias
UIS Ingenierias ENGINEERING, MULTIDISCIPLINARY-
自引率
33.30%
发文量
27
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信