{"title":"等差数列中质数的第一阶矩:超出西格尔-沃尔菲兹值域","authors":"S. Drappeau, D. Fiorilli","doi":"10.1112/tlm3.12030","DOIUrl":null,"url":null,"abstract":"We investigate the first moment of primes in progressions ∑q⩽x/N(q,a)=1ψ(x;q,a)−xφ(q)as x,N→∞ . We show unconditionally that, when a=1 , there is a significant bias towards negative values, uniformly for N⩽eclogx . The proof combines recent results of the authors on the first moment and on the error term in the dispersion method. More generally, for a∈Z∖{0} we prove estimates that take into account the potential existence (or inexistence) of Landau–Siegel zeros.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The first moment of primes in arithmetic progressions: beyond the Siegel–Walfisz range\",\"authors\":\"S. Drappeau, D. Fiorilli\",\"doi\":\"10.1112/tlm3.12030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the first moment of primes in progressions ∑q⩽x/N(q,a)=1ψ(x;q,a)−xφ(q)as x,N→∞ . We show unconditionally that, when a=1 , there is a significant bias towards negative values, uniformly for N⩽eclogx . The proof combines recent results of the authors on the first moment and on the error term in the dispersion method. More generally, for a∈Z∖{0} we prove estimates that take into account the potential existence (or inexistence) of Landau–Siegel zeros.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The first moment of primes in arithmetic progressions: beyond the Siegel–Walfisz range
We investigate the first moment of primes in progressions ∑q⩽x/N(q,a)=1ψ(x;q,a)−xφ(q)as x,N→∞ . We show unconditionally that, when a=1 , there is a significant bias towards negative values, uniformly for N⩽eclogx . The proof combines recent results of the authors on the first moment and on the error term in the dispersion method. More generally, for a∈Z∖{0} we prove estimates that take into account the potential existence (or inexistence) of Landau–Siegel zeros.