Michael Weyns, Ganjour Mazaev, G. Vaes, Filip Vancoillie, F. de Turck, Sofie Van Hoecke, F. Ongenae
{"title":"基于gis增强自编码器的配水管网泄漏定位","authors":"Michael Weyns, Ganjour Mazaev, G. Vaes, Filip Vancoillie, F. de Turck, Sofie Van Hoecke, F. Ongenae","doi":"10.1080/1573062X.2023.2216191","DOIUrl":null,"url":null,"abstract":"ABSTRACT Water loss due to persistent leakages in water distribution networks remains a substantive problem around the world, all the more so given noticeable trends of increasing global water scarcities. In this paper, we present a data-driven leak localization approach leveraging a connected Geographical Information System together with an autoencoder to perform anomaly detection on time-variable sensor data. Data-driven approaches are able to circumvent many of the uncertainty issues associated with model-based approaches, but they usually require significant amounts of high-quality data, reflecting many different leak scenarios, to perform well. Our approach obviates this requirement by relying only on leakless data during model training. We examine the efficacy of this approach on 19 realistic leak experiments conducted in the field. Based on these evaluations, we were able to achieve average search costs as low as 2.2 kilometers, for a total network length of 215 kilometers.","PeriodicalId":49392,"journal":{"name":"Urban Water Journal","volume":"20 1","pages":"859 - 881"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leak localization in water distribution networks using GIS-Enhanced autoencoders\",\"authors\":\"Michael Weyns, Ganjour Mazaev, G. Vaes, Filip Vancoillie, F. de Turck, Sofie Van Hoecke, F. Ongenae\",\"doi\":\"10.1080/1573062X.2023.2216191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Water loss due to persistent leakages in water distribution networks remains a substantive problem around the world, all the more so given noticeable trends of increasing global water scarcities. In this paper, we present a data-driven leak localization approach leveraging a connected Geographical Information System together with an autoencoder to perform anomaly detection on time-variable sensor data. Data-driven approaches are able to circumvent many of the uncertainty issues associated with model-based approaches, but they usually require significant amounts of high-quality data, reflecting many different leak scenarios, to perform well. Our approach obviates this requirement by relying only on leakless data during model training. We examine the efficacy of this approach on 19 realistic leak experiments conducted in the field. Based on these evaluations, we were able to achieve average search costs as low as 2.2 kilometers, for a total network length of 215 kilometers.\",\"PeriodicalId\":49392,\"journal\":{\"name\":\"Urban Water Journal\",\"volume\":\"20 1\",\"pages\":\"859 - 881\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Water Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1573062X.2023.2216191\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1573062X.2023.2216191","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Leak localization in water distribution networks using GIS-Enhanced autoencoders
ABSTRACT Water loss due to persistent leakages in water distribution networks remains a substantive problem around the world, all the more so given noticeable trends of increasing global water scarcities. In this paper, we present a data-driven leak localization approach leveraging a connected Geographical Information System together with an autoencoder to perform anomaly detection on time-variable sensor data. Data-driven approaches are able to circumvent many of the uncertainty issues associated with model-based approaches, but they usually require significant amounts of high-quality data, reflecting many different leak scenarios, to perform well. Our approach obviates this requirement by relying only on leakless data during model training. We examine the efficacy of this approach on 19 realistic leak experiments conducted in the field. Based on these evaluations, we were able to achieve average search costs as low as 2.2 kilometers, for a total network length of 215 kilometers.
期刊介绍:
Urban Water Journal provides a forum for the research and professional communities dealing with water systems in the urban environment, directly contributing to the furtherance of sustainable development. Particular emphasis is placed on the analysis of interrelationships and interactions between the individual water systems, urban water bodies and the wider environment. The Journal encourages the adoption of an integrated approach, and system''s thinking to solve the numerous problems associated with sustainable urban water management.
Urban Water Journal focuses on the water-related infrastructure in the city: namely potable water supply, treatment and distribution; wastewater collection, treatment and management, and environmental return; storm drainage and urban flood management. Specific topics of interest include:
network design, optimisation, management, operation and rehabilitation;
novel treatment processes for water and wastewater, resource recovery, treatment plant design and optimisation as well as treatment plants as part of the integrated urban water system;
demand management and water efficiency, water recycling and source control;
stormwater management, urban flood risk quantification and management;
monitoring, utilisation and management of urban water bodies including groundwater;
water-sensitive planning and design (including analysis of interactions of the urban water cycle with city planning and green infrastructure);
resilience of the urban water system, long term scenarios to manage uncertainty, system stress testing;
data needs, smart metering and sensors, advanced data analytics for knowledge discovery, quantification and management of uncertainty, smart technologies for urban water systems;
decision-support and informatic tools;...