Cox-Ingersoll-Ross过程的运行最大值与Kummer函数的一些性质

IF 0.3 Q4 MATHEMATICS
S. Gerhold, F. Hubalek, R. Paris
{"title":"Cox-Ingersoll-Ross过程的运行最大值与Kummer函数的一些性质","authors":"S. Gerhold, F. Hubalek, R. Paris","doi":"10.54379/jiasf-2022-2-1","DOIUrl":null,"url":null,"abstract":"We derive tail asymptotics for the running maximum of the CoxIngersoll-Ross process. The main result is proved by the saddle point method, where the tail estimate uses a new monotonicity property of the Kummer function. This auxiliary result is established by a computer algebra assisted proof. Moreover, we analyse the coefficients of the eigenfunction expansion of the running maximum distribution asymptotically.","PeriodicalId":43883,"journal":{"name":"Journal of Inequalities and Special Functions","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The running maximum of the Cox-Ingersoll-Ross process with some properties of the Kummer function\",\"authors\":\"S. Gerhold, F. Hubalek, R. Paris\",\"doi\":\"10.54379/jiasf-2022-2-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive tail asymptotics for the running maximum of the CoxIngersoll-Ross process. The main result is proved by the saddle point method, where the tail estimate uses a new monotonicity property of the Kummer function. This auxiliary result is established by a computer algebra assisted proof. Moreover, we analyse the coefficients of the eigenfunction expansion of the running maximum distribution asymptotically.\",\"PeriodicalId\":43883,\"journal\":{\"name\":\"Journal of Inequalities and Special Functions\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Special Functions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54379/jiasf-2022-2-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Special Functions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54379/jiasf-2022-2-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们导出了CoxIngersoll-Ross过程运行最大值的尾部渐近性。用鞍点法证明了主要结果,其中尾部估计利用了Kummer函数的一种新的单调性。通过计算机代数辅助证明,建立了这一辅助结果。此外,我们还渐近地分析了运行最大值分布的特征函数展开式的系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The running maximum of the Cox-Ingersoll-Ross process with some properties of the Kummer function
We derive tail asymptotics for the running maximum of the CoxIngersoll-Ross process. The main result is proved by the saddle point method, where the tail estimate uses a new monotonicity property of the Kummer function. This auxiliary result is established by a computer algebra assisted proof. Moreover, we analyse the coefficients of the eigenfunction expansion of the running maximum distribution asymptotically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信