{"title":"刺青的物候、生长和种子产量对其出现时间和种群的响应","authors":"B. Chauhan","doi":"10.1017/wsc.2022.51","DOIUrl":null,"url":null,"abstract":"Abstract Junglerice [Echinochloa colona (L.) Link.] is the most important grass weed species in Australian summer cropping systems. Although it is mainly a spring- and summer-emerging weed species, field observations suggest that E. colona is expanding its seasonality. A common garden experiment was conducted at the University of Queensland farm to examine the effect of planting dates on phenology, growth, and fecundity of eight populations of E. colona. All populations were planted every second month from September to July in 2019 to 2020 and 2020 to 2021. Echinochloa colona took the shortest time (4 to 6 d) to emerge when planted in November or January. However, the November population took the longest number of growing degree days to exhibit panicle emergence. In both years, populations differed in height and leaf, tiller, panicle, and seed production in response to planting times. Plants produced significantly greater biomass for the November planting (123 to 147 g plant–1) followed by the January planting and then the September planting. The March planting produced the lowest biomass. In the first year, the lowest number of seeds (3,500 seeds plant–1) was produced by the March planting; however, in the second year, similar numbers of seeds were produced by the March and July plantings. In the first year, seed production (51,000 seeds plant–1) was greatest for the November planting; however, some populations also produced a similar number of seeds for the January planting. In the second year, significantly greater seed production (111,000 seeds plant–1) was observed for the January planting compared with other planting dates. The aboveground biomass and seed production of E. colona were positively correlated. This study reveals variations among E. colona populations and suggests that although greater emphasis must be placed on controlling spring- and summer-emerging plants, management practices need to be extended throughout the year to control E. colona in southeastern Australia.","PeriodicalId":23688,"journal":{"name":"Weed Science","volume":"70 1","pages":"561 - 568"},"PeriodicalIF":2.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenology, growth, and seed production of junglerice (Echinochloa colona) in response to its emergence time and populations\",\"authors\":\"B. Chauhan\",\"doi\":\"10.1017/wsc.2022.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Junglerice [Echinochloa colona (L.) Link.] is the most important grass weed species in Australian summer cropping systems. Although it is mainly a spring- and summer-emerging weed species, field observations suggest that E. colona is expanding its seasonality. A common garden experiment was conducted at the University of Queensland farm to examine the effect of planting dates on phenology, growth, and fecundity of eight populations of E. colona. All populations were planted every second month from September to July in 2019 to 2020 and 2020 to 2021. Echinochloa colona took the shortest time (4 to 6 d) to emerge when planted in November or January. However, the November population took the longest number of growing degree days to exhibit panicle emergence. In both years, populations differed in height and leaf, tiller, panicle, and seed production in response to planting times. Plants produced significantly greater biomass for the November planting (123 to 147 g plant–1) followed by the January planting and then the September planting. The March planting produced the lowest biomass. In the first year, the lowest number of seeds (3,500 seeds plant–1) was produced by the March planting; however, in the second year, similar numbers of seeds were produced by the March and July plantings. In the first year, seed production (51,000 seeds plant–1) was greatest for the November planting; however, some populations also produced a similar number of seeds for the January planting. In the second year, significantly greater seed production (111,000 seeds plant–1) was observed for the January planting compared with other planting dates. The aboveground biomass and seed production of E. colona were positively correlated. This study reveals variations among E. colona populations and suggests that although greater emphasis must be placed on controlling spring- and summer-emerging plants, management practices need to be extended throughout the year to control E. colona in southeastern Australia.\",\"PeriodicalId\":23688,\"journal\":{\"name\":\"Weed Science\",\"volume\":\"70 1\",\"pages\":\"561 - 568\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weed Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1017/wsc.2022.51\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/wsc.2022.51","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Phenology, growth, and seed production of junglerice (Echinochloa colona) in response to its emergence time and populations
Abstract Junglerice [Echinochloa colona (L.) Link.] is the most important grass weed species in Australian summer cropping systems. Although it is mainly a spring- and summer-emerging weed species, field observations suggest that E. colona is expanding its seasonality. A common garden experiment was conducted at the University of Queensland farm to examine the effect of planting dates on phenology, growth, and fecundity of eight populations of E. colona. All populations were planted every second month from September to July in 2019 to 2020 and 2020 to 2021. Echinochloa colona took the shortest time (4 to 6 d) to emerge when planted in November or January. However, the November population took the longest number of growing degree days to exhibit panicle emergence. In both years, populations differed in height and leaf, tiller, panicle, and seed production in response to planting times. Plants produced significantly greater biomass for the November planting (123 to 147 g plant–1) followed by the January planting and then the September planting. The March planting produced the lowest biomass. In the first year, the lowest number of seeds (3,500 seeds plant–1) was produced by the March planting; however, in the second year, similar numbers of seeds were produced by the March and July plantings. In the first year, seed production (51,000 seeds plant–1) was greatest for the November planting; however, some populations also produced a similar number of seeds for the January planting. In the second year, significantly greater seed production (111,000 seeds plant–1) was observed for the January planting compared with other planting dates. The aboveground biomass and seed production of E. colona were positively correlated. This study reveals variations among E. colona populations and suggests that although greater emphasis must be placed on controlling spring- and summer-emerging plants, management practices need to be extended throughout the year to control E. colona in southeastern Australia.
期刊介绍:
Weed Science publishes original research and scholarship in the form of peer-reviewed articles focused on fundamental research directly related to all aspects of weed science in agricultural systems. Topics for Weed Science include:
- the biology and ecology of weeds in agricultural, forestry, aquatic, turf, recreational, rights-of-way and other settings, genetics of weeds
- herbicide resistance, chemistry, biochemistry, physiology and molecular action of herbicides and plant growth regulators used to manage undesirable vegetation
- ecology of cropping and other agricultural systems as they relate to weed management
- biological and ecological aspects of weed control tools including biological agents, and herbicide resistant crops
- effect of weed management on soil, air and water.