从类地系外行星喷出的固体颗粒,作为探测银河系中生命丰富程度的一种手段

IF 1.7 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
T. Totani
{"title":"从类地系外行星喷出的固体颗粒,作为探测银河系中生命丰富程度的一种手段","authors":"T. Totani","doi":"10.1017/S147355042300006X","DOIUrl":null,"url":null,"abstract":"\n Searching for extrasolar biosignatures is important to understand life on Earth and its origin. Astronomical observations of exoplanets may find such signatures, but it is difficult and may be impossible to claim unambiguous detection of life by remote sensing of exoplanet atmospheres. Here, another approach is considered: collecting grains ejected by asteroid impacts from exoplanets in the Milky Way and then travelling to the Solar System. The optimal grain size for this purpose is around 1 μm, and though uncertainty is large, about 105 such grains are expected to be accreting on Earth every year, which may contain biosignatures of life that existed on their home planets. These grains may be collected by detectors placed in space, or extracted from Antarctic ice or deep-sea sediments, depending on future technological developments.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid grains ejected from terrestrial exoplanets as a probe of the abundance of life in the Milky Way\",\"authors\":\"T. Totani\",\"doi\":\"10.1017/S147355042300006X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Searching for extrasolar biosignatures is important to understand life on Earth and its origin. Astronomical observations of exoplanets may find such signatures, but it is difficult and may be impossible to claim unambiguous detection of life by remote sensing of exoplanet atmospheres. Here, another approach is considered: collecting grains ejected by asteroid impacts from exoplanets in the Milky Way and then travelling to the Solar System. The optimal grain size for this purpose is around 1 μm, and though uncertainty is large, about 105 such grains are expected to be accreting on Earth every year, which may contain biosignatures of life that existed on their home planets. These grains may be collected by detectors placed in space, or extracted from Antarctic ice or deep-sea sediments, depending on future technological developments.\",\"PeriodicalId\":13879,\"journal\":{\"name\":\"International Journal of Astrobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/S147355042300006X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/S147355042300006X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

寻找太阳系外的生物特征对于了解地球上的生命及其起源非常重要。对系外行星的天文观测可能会发现这样的特征,但通过遥感系外行星大气层来明确探测生命是困难的,也可能是不可能的。在这里,考虑了另一种方法:收集小行星撞击银河系外行星喷出的颗粒,然后前往太阳系。为此目的,最佳晶粒尺寸约为1μm,尽管不确定性很大,但预计每年约有105个这样的晶粒在地球上堆积,其中可能包含其母行星上存在的生命的生物特征。这些颗粒可以由放置在太空中的探测器收集,也可以从南极冰或深海沉积物中提取,这取决于未来的技术发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solid grains ejected from terrestrial exoplanets as a probe of the abundance of life in the Milky Way
Searching for extrasolar biosignatures is important to understand life on Earth and its origin. Astronomical observations of exoplanets may find such signatures, but it is difficult and may be impossible to claim unambiguous detection of life by remote sensing of exoplanet atmospheres. Here, another approach is considered: collecting grains ejected by asteroid impacts from exoplanets in the Milky Way and then travelling to the Solar System. The optimal grain size for this purpose is around 1 μm, and though uncertainty is large, about 105 such grains are expected to be accreting on Earth every year, which may contain biosignatures of life that existed on their home planets. These grains may be collected by detectors placed in space, or extracted from Antarctic ice or deep-sea sediments, depending on future technological developments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Astrobiology
International Journal of Astrobiology 地学天文-地球科学综合
CiteScore
3.70
自引率
11.80%
发文量
45
审稿时长
>12 weeks
期刊介绍: International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信