基因组学中的草图和亚线性数据结构

IF 7 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
G. Marçais, Brad Solomon, Robert Patro, Carl Kingsford
{"title":"基因组学中的草图和亚线性数据结构","authors":"G. Marçais, Brad Solomon, Robert Patro, Carl Kingsford","doi":"10.1146/ANNUREV-BIODATASCI-072018-021156","DOIUrl":null,"url":null,"abstract":"Large-scale genomics demands computational methods that scale sublinearly with the growth of data. We review several data structures and sketching techniques that have been used in genomic analysis methods. Specifically, we focus on four key ideas that take different approaches to achieve sublinear space usage and processing time: compressed full-text indices, approximate membership query data structures, locality-sensitive hashing, and minimizers schemes. We describe these techniques at a high level and give several representative applications of each.","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"1 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2019-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-BIODATASCI-072018-021156","citationCount":"35","resultStr":"{\"title\":\"Sketching and Sublinear Data Structures in Genomics\",\"authors\":\"G. Marçais, Brad Solomon, Robert Patro, Carl Kingsford\",\"doi\":\"10.1146/ANNUREV-BIODATASCI-072018-021156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale genomics demands computational methods that scale sublinearly with the growth of data. We review several data structures and sketching techniques that have been used in genomic analysis methods. Specifically, we focus on four key ideas that take different approaches to achieve sublinear space usage and processing time: compressed full-text indices, approximate membership query data structures, locality-sensitive hashing, and minimizers schemes. We describe these techniques at a high level and give several representative applications of each.\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2019-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/ANNUREV-BIODATASCI-072018-021156\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV-BIODATASCI-072018-021156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREV-BIODATASCI-072018-021156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 35

摘要

大规模基因组学需要随着数据的增长而亚线性扩展的计算方法。我们回顾了基因组分析方法中使用的几种数据结构和绘制技术。具体来说,我们关注四个关键思想,它们采用不同的方法来实现次线性空间的使用和处理时间:压缩全文索引、近似成员查询数据结构、位置敏感哈希和最小化方案。我们对这些技术进行了高水平的描述,并给出了每种技术的几个代表性应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sketching and Sublinear Data Structures in Genomics
Large-scale genomics demands computational methods that scale sublinearly with the growth of data. We review several data structures and sketching techniques that have been used in genomic analysis methods. Specifically, we focus on four key ideas that take different approaches to achieve sublinear space usage and processing time: compressed full-text indices, approximate membership query data structures, locality-sensitive hashing, and minimizers schemes. We describe these techniques at a high level and give several representative applications of each.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
1.70%
发文量
0
期刊介绍: The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信