G. Marçais, Brad Solomon, Robert Patro, Carl Kingsford
{"title":"基因组学中的草图和亚线性数据结构","authors":"G. Marçais, Brad Solomon, Robert Patro, Carl Kingsford","doi":"10.1146/ANNUREV-BIODATASCI-072018-021156","DOIUrl":null,"url":null,"abstract":"Large-scale genomics demands computational methods that scale sublinearly with the growth of data. We review several data structures and sketching techniques that have been used in genomic analysis methods. Specifically, we focus on four key ideas that take different approaches to achieve sublinear space usage and processing time: compressed full-text indices, approximate membership query data structures, locality-sensitive hashing, and minimizers schemes. We describe these techniques at a high level and give several representative applications of each.","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"1 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2019-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-BIODATASCI-072018-021156","citationCount":"35","resultStr":"{\"title\":\"Sketching and Sublinear Data Structures in Genomics\",\"authors\":\"G. Marçais, Brad Solomon, Robert Patro, Carl Kingsford\",\"doi\":\"10.1146/ANNUREV-BIODATASCI-072018-021156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale genomics demands computational methods that scale sublinearly with the growth of data. We review several data structures and sketching techniques that have been used in genomic analysis methods. Specifically, we focus on four key ideas that take different approaches to achieve sublinear space usage and processing time: compressed full-text indices, approximate membership query data structures, locality-sensitive hashing, and minimizers schemes. We describe these techniques at a high level and give several representative applications of each.\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2019-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/ANNUREV-BIODATASCI-072018-021156\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV-BIODATASCI-072018-021156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREV-BIODATASCI-072018-021156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Sketching and Sublinear Data Structures in Genomics
Large-scale genomics demands computational methods that scale sublinearly with the growth of data. We review several data structures and sketching techniques that have been used in genomic analysis methods. Specifically, we focus on four key ideas that take different approaches to achieve sublinear space usage and processing time: compressed full-text indices, approximate membership query data structures, locality-sensitive hashing, and minimizers schemes. We describe these techniques at a high level and give several representative applications of each.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.