{"title":"Morse指数、Betti数和有界区域极小超曲面的奇异集","authors":"Antoine Song","doi":"10.1215/00127094-2023-0012","DOIUrl":null,"url":null,"abstract":"We introduce a combinatorial argument to study closed minimal hypersurfaces of bounded area and high Morse index. Let $(M^{n+1},g)$ be a closed Riemannian manifold and $\\Sigma\\subset M$ be a closed embedded minimal hypersurface with area at most $A>0$ and with a singular set of Hausdorff dimension at most $n-7$. We show the following bounds: there is $C_A>0$ depending only on $n$, $g$, and $A$ so that $$\\sum_{i=0}^n b^i(\\Sigma) \\leq C_A \\big(1+index(\\Sigma)\\big) \\quad \\text{ if $3\\leq n+1\\leq 7$},$$ $$\\mathcal{H}^{n-7}\\big(Sing(\\Sigma)\\big) \\leq C_A \\big(1+index(\\Sigma)\\big)^{7/n} \\quad \\text{ if $n+1\\geq 8$},$$ where $b^i$ denote the Betti numbers over any field, $\\mathcal{H}^{n-7}$ is the $(n-7)$-dimensional Hausdorff measure and $Sing(\\Sigma)$ is the singular set of $\\Sigma$. In fact in dimension $n+1=3$, $C_A$ depends linearly on $A$. We list some open problems at the end of the paper.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Morse index, Betti numbers, and singular set of bounded area minimal hypersurfaces\",\"authors\":\"Antoine Song\",\"doi\":\"10.1215/00127094-2023-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a combinatorial argument to study closed minimal hypersurfaces of bounded area and high Morse index. Let $(M^{n+1},g)$ be a closed Riemannian manifold and $\\\\Sigma\\\\subset M$ be a closed embedded minimal hypersurface with area at most $A>0$ and with a singular set of Hausdorff dimension at most $n-7$. We show the following bounds: there is $C_A>0$ depending only on $n$, $g$, and $A$ so that $$\\\\sum_{i=0}^n b^i(\\\\Sigma) \\\\leq C_A \\\\big(1+index(\\\\Sigma)\\\\big) \\\\quad \\\\text{ if $3\\\\leq n+1\\\\leq 7$},$$ $$\\\\mathcal{H}^{n-7}\\\\big(Sing(\\\\Sigma)\\\\big) \\\\leq C_A \\\\big(1+index(\\\\Sigma)\\\\big)^{7/n} \\\\quad \\\\text{ if $n+1\\\\geq 8$},$$ where $b^i$ denote the Betti numbers over any field, $\\\\mathcal{H}^{n-7}$ is the $(n-7)$-dimensional Hausdorff measure and $Sing(\\\\Sigma)$ is the singular set of $\\\\Sigma$. In fact in dimension $n+1=3$, $C_A$ depends linearly on $A$. We list some open problems at the end of the paper.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2023-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2023-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Morse index, Betti numbers, and singular set of bounded area minimal hypersurfaces
We introduce a combinatorial argument to study closed minimal hypersurfaces of bounded area and high Morse index. Let $(M^{n+1},g)$ be a closed Riemannian manifold and $\Sigma\subset M$ be a closed embedded minimal hypersurface with area at most $A>0$ and with a singular set of Hausdorff dimension at most $n-7$. We show the following bounds: there is $C_A>0$ depending only on $n$, $g$, and $A$ so that $$\sum_{i=0}^n b^i(\Sigma) \leq C_A \big(1+index(\Sigma)\big) \quad \text{ if $3\leq n+1\leq 7$},$$ $$\mathcal{H}^{n-7}\big(Sing(\Sigma)\big) \leq C_A \big(1+index(\Sigma)\big)^{7/n} \quad \text{ if $n+1\geq 8$},$$ where $b^i$ denote the Betti numbers over any field, $\mathcal{H}^{n-7}$ is the $(n-7)$-dimensional Hausdorff measure and $Sing(\Sigma)$ is the singular set of $\Sigma$. In fact in dimension $n+1=3$, $C_A$ depends linearly on $A$. We list some open problems at the end of the paper.