{"title":"有粘结预应力FRP层板加固工字钢梁柱的分析与数值模型","authors":"E.Y. Sayed-Ahmed, A.T. Abdelrazik","doi":"10.56748/ejse.19230","DOIUrl":null,"url":null,"abstract":"Fibre Reinforced Polymer (FRP) laminate are currently used in strengthening steel structures having a significant favorable effect on the member capacity. Researches have been focused on FRP strength-ened beams or columns; thus, I-section beam-columns strengthened with prestressed bonded FRP laminate are scrutinized. Steel yielding, laminate rupture and/or laminate interfacial debonding common failure modes af-fecting the strengthened beam-columns capacity: debonding commonly leads to a premature failure. Prestress-ing the FRP laminate may delay this premature failure. Equations are analytically developed to evaluate the interfacial shear and normal stresses between the laminate and the steel; hence, the maximum stresses at debond-ing are evaluated. Thus, the capacity of a beam-column with prestressed FRP laminate is analytically estimated. A nonlinear numerical model is then developed for these beam-columns. The model is verified against exper-imental results available from literature. Then, a parametric study is conducted using the numerical model. Based on these results, a regression analysis is performed and the capacity of beam-columns with prestressed FRP laminate is numerically estimated considering steel yielding or FRP laminate rupture. Results of the nu-merical and analytical models lead to a proposal for evaluating the FRP strengthened beam-column capacity and the need for prestressing the FRP laminate.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical and Numerical Models of Steel I-Section Beam-Columns Strengthened with Bonded Prestressed FRP Laminates\",\"authors\":\"E.Y. Sayed-Ahmed, A.T. Abdelrazik\",\"doi\":\"10.56748/ejse.19230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fibre Reinforced Polymer (FRP) laminate are currently used in strengthening steel structures having a significant favorable effect on the member capacity. Researches have been focused on FRP strength-ened beams or columns; thus, I-section beam-columns strengthened with prestressed bonded FRP laminate are scrutinized. Steel yielding, laminate rupture and/or laminate interfacial debonding common failure modes af-fecting the strengthened beam-columns capacity: debonding commonly leads to a premature failure. Prestress-ing the FRP laminate may delay this premature failure. Equations are analytically developed to evaluate the interfacial shear and normal stresses between the laminate and the steel; hence, the maximum stresses at debond-ing are evaluated. Thus, the capacity of a beam-column with prestressed FRP laminate is analytically estimated. A nonlinear numerical model is then developed for these beam-columns. The model is verified against exper-imental results available from literature. Then, a parametric study is conducted using the numerical model. Based on these results, a regression analysis is performed and the capacity of beam-columns with prestressed FRP laminate is numerically estimated considering steel yielding or FRP laminate rupture. Results of the nu-merical and analytical models lead to a proposal for evaluating the FRP strengthened beam-column capacity and the need for prestressing the FRP laminate.\",\"PeriodicalId\":52513,\"journal\":{\"name\":\"Electronic Journal of Structural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56748/ejse.19230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.19230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Analytical and Numerical Models of Steel I-Section Beam-Columns Strengthened with Bonded Prestressed FRP Laminates
Fibre Reinforced Polymer (FRP) laminate are currently used in strengthening steel structures having a significant favorable effect on the member capacity. Researches have been focused on FRP strength-ened beams or columns; thus, I-section beam-columns strengthened with prestressed bonded FRP laminate are scrutinized. Steel yielding, laminate rupture and/or laminate interfacial debonding common failure modes af-fecting the strengthened beam-columns capacity: debonding commonly leads to a premature failure. Prestress-ing the FRP laminate may delay this premature failure. Equations are analytically developed to evaluate the interfacial shear and normal stresses between the laminate and the steel; hence, the maximum stresses at debond-ing are evaluated. Thus, the capacity of a beam-column with prestressed FRP laminate is analytically estimated. A nonlinear numerical model is then developed for these beam-columns. The model is verified against exper-imental results available from literature. Then, a parametric study is conducted using the numerical model. Based on these results, a regression analysis is performed and the capacity of beam-columns with prestressed FRP laminate is numerically estimated considering steel yielding or FRP laminate rupture. Results of the nu-merical and analytical models lead to a proposal for evaluating the FRP strengthened beam-column capacity and the need for prestressing the FRP laminate.
期刊介绍:
The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.