用共轭梯度法建立水稻产量的多元线性回归模型

IF 0.3 Q4 MATHEMATICS
N. Norddin, Mohd Rivaie Mohd Ali, Nurul Hafawati Fadhilah, N. Atikah, Anis Shahida, Nur Hidayah Nohd Noh
{"title":"用共轭梯度法建立水稻产量的多元线性回归模型","authors":"N. Norddin, Mohd Rivaie Mohd Ali, Nurul Hafawati Fadhilah, N. Atikah, Anis Shahida, Nur Hidayah Nohd Noh","doi":"10.11113/MATEMATIKA.V35.N2.1180","DOIUrl":null,"url":null,"abstract":"Regression is one of the basic relationship models in statistics. This paper focuses on the formation of regression models for the rice production in Malaysia by analysing the effects of paddy population, planted area, human population and domestic consumption. In this study, the data were collected from the year 1980 until 2014 from the website of the Department of Statistics Malaysia and Index Mundi. It is well known that the regression model can be solved using the least square method. Since least square problem is an unconstrained optimisation, the Conjugate Gradient (CG) was chosen to generate a solution for regression model and hence to obtain the coefficient value of independent variables.  Results show that the CG methods could produce a good regression equation with acceptable Root Mean-Square Error (RMSE) value.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple Linear Regression Model of Rice Production using Conjugate Gradient Methods\",\"authors\":\"N. Norddin, Mohd Rivaie Mohd Ali, Nurul Hafawati Fadhilah, N. Atikah, Anis Shahida, Nur Hidayah Nohd Noh\",\"doi\":\"10.11113/MATEMATIKA.V35.N2.1180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regression is one of the basic relationship models in statistics. This paper focuses on the formation of regression models for the rice production in Malaysia by analysing the effects of paddy population, planted area, human population and domestic consumption. In this study, the data were collected from the year 1980 until 2014 from the website of the Department of Statistics Malaysia and Index Mundi. It is well known that the regression model can be solved using the least square method. Since least square problem is an unconstrained optimisation, the Conjugate Gradient (CG) was chosen to generate a solution for regression model and hence to obtain the coefficient value of independent variables.  Results show that the CG methods could produce a good regression equation with acceptable Root Mean-Square Error (RMSE) value.\",\"PeriodicalId\":43733,\"journal\":{\"name\":\"Matematika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/MATEMATIKA.V35.N2.1180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V35.N2.1180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

回归是统计学中的基本关系模型之一。本文通过分析水稻人口、种植面积、人口和国内消费的影响,建立了马来西亚水稻生产的回归模型。在这项研究中,数据是从1980年到2014年从马来西亚统计局网站和Index Mundi收集的。众所周知,回归模型可以使用最小二乘法求解。由于最小二乘问题是一个无约束优化问题,因此选择共轭梯度(CG)来生成回归模型的解,从而获得自变量的系数值。结果表明,CG方法可以产生一个良好的回归方程,其均方根误差(RMSE)值可以接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Linear Regression Model of Rice Production using Conjugate Gradient Methods
Regression is one of the basic relationship models in statistics. This paper focuses on the formation of regression models for the rice production in Malaysia by analysing the effects of paddy population, planted area, human population and domestic consumption. In this study, the data were collected from the year 1980 until 2014 from the website of the Department of Statistics Malaysia and Index Mundi. It is well known that the regression model can be solved using the least square method. Since least square problem is an unconstrained optimisation, the Conjugate Gradient (CG) was chosen to generate a solution for regression model and hence to obtain the coefficient value of independent variables.  Results show that the CG methods could produce a good regression equation with acceptable Root Mean-Square Error (RMSE) value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信