{"title":"NMJ第246卷封面和封面问题","authors":"S. Rao, Quanting Zhao","doi":"10.1017/nmj.2022.9","DOIUrl":null,"url":null,"abstract":"We prove that the maximal number of conics in a smooth sextic K3-surface X ⊂ P is 285, whereas the maximal number of real conics in a real sextic is 261. In both extremal configurations, all conics are irreducible. §","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NMJ volume 246 Cover and Front matter\",\"authors\":\"S. Rao, Quanting Zhao\",\"doi\":\"10.1017/nmj.2022.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the maximal number of conics in a smooth sextic K3-surface X ⊂ P is 285, whereas the maximal number of real conics in a real sextic is 261. In both extremal configurations, all conics are irreducible. §\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that the maximal number of conics in a smooth sextic K3-surface X ⊂ P is 285, whereas the maximal number of real conics in a real sextic is 261. In both extremal configurations, all conics are irreducible. §