乘法模块的标准形式

IF 0.4 Q4 MATHEMATICS
B. Boudine, Charkani Mohammed Elhassani
{"title":"乘法模块的标准形式","authors":"B. Boudine, Charkani Mohammed Elhassani","doi":"10.5269/bspm.52858","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring with unit. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$, there is an ideal $I$ of $R$ such that $N=IM$. $M$ is called also a CF-module if there is some ideals $I_1,...,I_n$ of $R$ such that $M \\simeq R/I_1 \\bigoplus R/I_2 \\bigoplus ... \\bigoplus R/I_n$ and $I_1 \\subseteq I_2 \\subseteq ... \\subseteq I_n$. In this paper, we use some new results about $\\mu_R(M)$ the minimal number of generators of $M$ to show that a finitely generated multiplication module is a CF-module if and only if it is a cyclic module.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The canonical form of multiplication modules\",\"authors\":\"B. Boudine, Charkani Mohammed Elhassani\",\"doi\":\"10.5269/bspm.52858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a commutative ring with unit. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$, there is an ideal $I$ of $R$ such that $N=IM$. $M$ is called also a CF-module if there is some ideals $I_1,...,I_n$ of $R$ such that $M \\\\simeq R/I_1 \\\\bigoplus R/I_2 \\\\bigoplus ... \\\\bigoplus R/I_n$ and $I_1 \\\\subseteq I_2 \\\\subseteq ... \\\\subseteq I_n$. In this paper, we use some new results about $\\\\mu_R(M)$ the minimal number of generators of $M$ to show that a finitely generated multiplication module is a CF-module if and only if it is a cyclic module.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.52858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.52858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$R$是一个有单位的交换环。如果对于$M$的每个子模块$N$,存在$R$的理想$I$,使得$N=IM$,则$R$-模块$M$称为乘法模块$M$也被称为CF模块,。。。,$R$的I_n$,使得$M\simeq R/I_1\bigoplus R/I_2\bigoplus。。。\bigoplus R/I_n$和$I_1\substeqI_2\substeq。。。\子节I_n$。本文利用$\mu_R(M)$的最小生成元数$M$的一些新结果,证明了有限生成的乘法模是CF模,当且仅当它是循环模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The canonical form of multiplication modules
Let $R$ be a commutative ring with unit. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$, there is an ideal $I$ of $R$ such that $N=IM$. $M$ is called also a CF-module if there is some ideals $I_1,...,I_n$ of $R$ such that $M \simeq R/I_1 \bigoplus R/I_2 \bigoplus ... \bigoplus R/I_n$ and $I_1 \subseteq I_2 \subseteq ... \subseteq I_n$. In this paper, we use some new results about $\mu_R(M)$ the minimal number of generators of $M$ to show that a finitely generated multiplication module is a CF-module if and only if it is a cyclic module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信