矩阵中心化子中幂零元生成的代数

Pub Date : 2021-12-23 DOI:10.13001/ela.2022.6503
Ralph John de la Cruz, Eloise Misa
{"title":"矩阵中心化子中幂零元生成的代数","authors":"Ralph John de la Cruz, Eloise Misa","doi":"10.13001/ela.2022.6503","DOIUrl":null,"url":null,"abstract":"For an arbitrary square matrix $S$, denote by $C(S)$ the centralizer of $S$, and by $C(S)_N$ the set of all nilpotent elements in $C(S)$. In this paper, we use the Weyr canonical form to study the subalgebra of $C(S)$ generated by $C(S)_N$. We determine conditions on $S$ such that $C(S)_N$ is a subalgebra of $C(S)$. We also determine conditions on $S$ such that the subalgebra generated by $C(S)_N$ is $C(S).$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The algebra generated by nilpotent elements in a matrix centralizer\",\"authors\":\"Ralph John de la Cruz, Eloise Misa\",\"doi\":\"10.13001/ela.2022.6503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an arbitrary square matrix $S$, denote by $C(S)$ the centralizer of $S$, and by $C(S)_N$ the set of all nilpotent elements in $C(S)$. In this paper, we use the Weyr canonical form to study the subalgebra of $C(S)$ generated by $C(S)_N$. We determine conditions on $S$ such that $C(S)_N$ is a subalgebra of $C(S)$. We also determine conditions on $S$ such that the subalgebra generated by $C(S)_N$ is $C(S).$\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.6503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于任意的平方矩阵$S$,用$C(S)$表示$S$的中心化子,用$C(S)_N$表示$C(S)$中所有幂零元素的集合。在本文中,我们使用Weyr正则形式来研究由$C(S)_N$生成的$C(S)$的子代数。我们确定了$S$上的条件,使得$C(S)_N$是$C(S)$的子代数。我们还确定了$S$上的条件,使得由$C(S)_N$生成的子代数是$C(S)$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The algebra generated by nilpotent elements in a matrix centralizer
For an arbitrary square matrix $S$, denote by $C(S)$ the centralizer of $S$, and by $C(S)_N$ the set of all nilpotent elements in $C(S)$. In this paper, we use the Weyr canonical form to study the subalgebra of $C(S)$ generated by $C(S)_N$. We determine conditions on $S$ such that $C(S)_N$ is a subalgebra of $C(S)$. We also determine conditions on $S$ such that the subalgebra generated by $C(S)_N$ is $C(S).$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信