{"title":"高协维边界集的椭圆理论","authors":"G. David, J. Feneuil, S. Mayboroda","doi":"10.1090/memo/1346","DOIUrl":null,"url":null,"abstract":"<p>Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1.</p>\n\n<p>To this end, we turn to degenerate elliptic equations. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma subset-of double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma \\subset \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be an Ahlfors regular set of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d greater-than n minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d>n-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (not necessarily integer) and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega equals double-struck upper R Superscript n Baseline minus normal upper Gamma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:mo class=\"MJX-variant\">∖<!-- ∖ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega = \\mathbb {R}^n \\setminus \\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L equals minus d i v upper A nabla\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>div</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>A</mml:mi>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L = - \\operatorname {div} A\\nabla</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a degenerate elliptic operator with measurable coefficients such that the ellipticity constants of the matrix <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are bounded from above and below by a multiple of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d i s t left-parenthesis dot comma normal upper Gamma right-parenthesis Superscript d plus 1 minus n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>dist</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>d</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {dist}(\\cdot , \\Gamma )^{d+1-n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We define weak solutions; prove trace and extension theorems in suitable weighted Sobolev spaces; establish the maximum principle, De Giorgi-Nash-Moser estimates, the Harnack inequality, the Hölder continuity of solutions (inside and at the boundary). We define the Green function and provide the basic set of pointwise and/or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> estimates for the Green function and for its gradient. With this at hand, we define harmonic measure associated to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, establish its doubling property, non-degeneracy, change-of-the-pole formulas, and, finally, the comparison principle for local solutions.</p>\n\n<p>In another article to appear, we will prove that when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the graph of a Lipschitz function with small Lipschitz constant, we can find an elliptic operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for which the harmonic measure given here is absolutely continuous with respect to the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Hausdorff measure on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and vice versa. It thus extends Dahlberg’s theorem to some sets of codimension higher than 1.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Elliptic Theory for Sets with Higher Co-dimensional Boundaries\",\"authors\":\"G. David, J. Feneuil, S. Mayboroda\",\"doi\":\"10.1090/memo/1346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1.</p>\\n\\n<p>To this end, we turn to degenerate elliptic equations. Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma subset-of double-struck upper R Superscript n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma \\\\subset \\\\mathbb {R}^n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be an Ahlfors regular set of dimension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d greater-than n minus 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>d</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d>n-1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (not necessarily integer) and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega equals double-struck upper R Superscript n Baseline minus normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n <mml:mo class=\\\"MJX-variant\\\">∖<!-- ∖ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega = \\\\mathbb {R}^n \\\\setminus \\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L equals minus d i v upper A nabla\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>L</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>div</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mi>A</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L = - \\\\operatorname {div} A\\\\nabla</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a degenerate elliptic operator with measurable coefficients such that the ellipticity constants of the matrix <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are bounded from above and below by a multiple of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d i s t left-parenthesis dot comma normal upper Gamma right-parenthesis Superscript d plus 1 minus n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>dist</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>d</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {dist}(\\\\cdot , \\\\Gamma )^{d+1-n}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We define weak solutions; prove trace and extension theorems in suitable weighted Sobolev spaces; establish the maximum principle, De Giorgi-Nash-Moser estimates, the Harnack inequality, the Hölder continuity of solutions (inside and at the boundary). We define the Green function and provide the basic set of pointwise and/or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript p\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L^p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> estimates for the Green function and for its gradient. With this at hand, we define harmonic measure associated to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, establish its doubling property, non-degeneracy, change-of-the-pole formulas, and, finally, the comparison principle for local solutions.</p>\\n\\n<p>In another article to appear, we will prove that when <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the graph of a Lipschitz function with small Lipschitz constant, we can find an elliptic operator <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for which the harmonic measure given here is absolutely continuous with respect to the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-Hausdorff measure on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and vice versa. It thus extends Dahlberg’s theorem to some sets of codimension higher than 1.</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1346\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1346","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
集合的许多几何性质和解析性质取决于椭圆测度的性质,而这在高协维集合中是众所周知的缺失。这个手稿的目的是发展一个版本的椭圆理论,与线性偏微分方程相关,最终产生一个类似于谐波测度的概念,对于余维数高于1的集合。为此,我们转向简并椭圆方程。设Γ∧R n \Gamma\subset\mathbbr{ ^n是维数d>n−1 d>n-1(不一定是整数)的Ahlfors正则集,并且Ω = R n≠Γ }\Omega = \mathbbr{ ^n }\setminus\Gamma。∇L = - \operatornamediv{ A }\nabla是一个简并的椭圆算子,它具有可测量的系数,使得矩阵A A的椭圆常数从上到下由一个倍的dist (Γ) d + 1−n \operatornamedist{ (}\cdot, \Gamma)^ {d+1-n}。我们定义弱解;在适当的加权Sobolev空间中证明迹定理和可拓定理;建立了极大值原理、De Giorgi-Nash-Moser估计、Harnack不等式、解(边界内和边界处)的Hölder连续性。我们定义了Green函数,并提供了Green函数及其梯度的点向和/或lpl ^p估计的基本集合。在此基础上,我们定义了与ll相关的调和测度,建立了它的倍性、非简并性、极变公式,最后给出了局部解的比较原理。在即将出现的另一篇文章中,我们将证明当Γ \Gamma是具有小Lipschitz常数的Lipschitz函数的图时,我们可以找到一个椭圆算子L L,对于它,这里给出的调和测度相对于Γ \Gamma上的d d -Hausdorff测度是绝对连续的,反之亦然。从而将Dahlberg定理推广到余维数大于1的一些集合。
Elliptic Theory for Sets with Higher Co-dimensional Boundaries
Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1.
To this end, we turn to degenerate elliptic equations. Let Γ⊂Rn\Gamma \subset \mathbb {R}^n be an Ahlfors regular set of dimension d>n−1d>n-1 (not necessarily integer) and Ω=Rn∖Γ\Omega = \mathbb {R}^n \setminus \Gamma. Let L=−divA∇L = - \operatorname {div} A\nabla be a degenerate elliptic operator with measurable coefficients such that the ellipticity constants of the matrix AA are bounded from above and below by a multiple of dist(⋅,Γ)d+1−n\operatorname {dist}(\cdot , \Gamma )^{d+1-n}. We define weak solutions; prove trace and extension theorems in suitable weighted Sobolev spaces; establish the maximum principle, De Giorgi-Nash-Moser estimates, the Harnack inequality, the Hölder continuity of solutions (inside and at the boundary). We define the Green function and provide the basic set of pointwise and/or LpL^p estimates for the Green function and for its gradient. With this at hand, we define harmonic measure associated to LL, establish its doubling property, non-degeneracy, change-of-the-pole formulas, and, finally, the comparison principle for local solutions.
In another article to appear, we will prove that when Γ\Gamma is the graph of a Lipschitz function with small Lipschitz constant, we can find an elliptic operator LL for which the harmonic measure given here is absolutely continuous with respect to the dd-Hausdorff measure on Γ\Gamma and vice versa. It thus extends Dahlberg’s theorem to some sets of codimension higher than 1.
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.