{"title":"高协维边界集的椭圆理论","authors":"G. David, J. Feneuil, S. Mayboroda","doi":"10.1090/memo/1346","DOIUrl":null,"url":null,"abstract":"<p>Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1.</p>\n\n<p>To this end, we turn to degenerate elliptic equations. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma subset-of double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma \\subset \\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be an Ahlfors regular set of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d greater-than n minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d>n-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (not necessarily integer) and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega equals double-struck upper R Superscript n Baseline minus normal upper Gamma\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:mo class=\"MJX-variant\">∖<!-- ∖ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Omega = \\mathbb {R}^n \\setminus \\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L equals minus d i v upper A nabla\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>div</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>A</mml:mi>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L = - \\operatorname {div} A\\nabla</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a degenerate elliptic operator with measurable coefficients such that the ellipticity constants of the matrix <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are bounded from above and below by a multiple of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d i s t left-parenthesis dot comma normal upper Gamma right-parenthesis Superscript d plus 1 minus n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>dist</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>d</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {dist}(\\cdot , \\Gamma )^{d+1-n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We define weak solutions; prove trace and extension theorems in suitable weighted Sobolev spaces; establish the maximum principle, De Giorgi-Nash-Moser estimates, the Harnack inequality, the Hölder continuity of solutions (inside and at the boundary). We define the Green function and provide the basic set of pointwise and/or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript p\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">L^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> estimates for the Green function and for its gradient. With this at hand, we define harmonic measure associated to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, establish its doubling property, non-degeneracy, change-of-the-pole formulas, and, finally, the comparison principle for local solutions.</p>\n\n<p>In another article to appear, we will prove that when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the graph of a Lipschitz function with small Lipschitz constant, we can find an elliptic operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for which the harmonic measure given here is absolutely continuous with respect to the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Hausdorff measure on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and vice versa. It thus extends Dahlberg’s theorem to some sets of codimension higher than 1.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Elliptic Theory for Sets with Higher Co-dimensional Boundaries\",\"authors\":\"G. David, J. Feneuil, S. Mayboroda\",\"doi\":\"10.1090/memo/1346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1.</p>\\n\\n<p>To this end, we turn to degenerate elliptic equations. Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma subset-of double-struck upper R Superscript n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma \\\\subset \\\\mathbb {R}^n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be an Ahlfors regular set of dimension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d greater-than n minus 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>d</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi>n</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d>n-1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (not necessarily integer) and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega equals double-struck upper R Superscript n Baseline minus normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Ω<!-- Ω --></mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mi>n</mml:mi>\\n </mml:msup>\\n <mml:mo class=\\\"MJX-variant\\\">∖<!-- ∖ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega = \\\\mathbb {R}^n \\\\setminus \\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L equals minus d i v upper A nabla\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>L</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>div</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mi>A</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L = - \\\\operatorname {div} A\\\\nabla</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a degenerate elliptic operator with measurable coefficients such that the ellipticity constants of the matrix <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A\\\">\\n <mml:semantics>\\n <mml:mi>A</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are bounded from above and below by a multiple of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d i s t left-parenthesis dot comma normal upper Gamma right-parenthesis Superscript d plus 1 minus n\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>dist</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mo>⋅<!-- ⋅ --></mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>d</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\operatorname {dist}(\\\\cdot , \\\\Gamma )^{d+1-n}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We define weak solutions; prove trace and extension theorems in suitable weighted Sobolev spaces; establish the maximum principle, De Giorgi-Nash-Moser estimates, the Harnack inequality, the Hölder continuity of solutions (inside and at the boundary). We define the Green function and provide the basic set of pointwise and/or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L Superscript p\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mi>p</mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L^p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> estimates for the Green function and for its gradient. With this at hand, we define harmonic measure associated to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, establish its doubling property, non-degeneracy, change-of-the-pole formulas, and, finally, the comparison principle for local solutions.</p>\\n\\n<p>In another article to appear, we will prove that when <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the graph of a Lipschitz function with small Lipschitz constant, we can find an elliptic operator <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for which the harmonic measure given here is absolutely continuous with respect to the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d\\\">\\n <mml:semantics>\\n <mml:mi>d</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-Hausdorff measure on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and vice versa. It thus extends Dahlberg’s theorem to some sets of codimension higher than 1.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3
摘要
集合的许多几何性质和解析性质取决于椭圆测度的性质,而这在高协维集合中是众所周知的缺失。这个手稿的目的是发展一个版本的椭圆理论,与线性偏微分方程相关,最终产生一个类似于谐波测度的概念,对于余维数高于1的集合。为此,我们转向简并椭圆方程。设Γ∧R n \Gamma\subset\mathbbr{ ^n是维数d>n−1 d>n-1(不一定是整数)的Ahlfors正则集,并且Ω = R n≠Γ }\Omega = \mathbbr{ ^n }\setminus\Gamma。∇L = - \operatornamediv{ A }\nabla是一个简并的椭圆算子,它具有可测量的系数,使得矩阵A A的椭圆常数从上到下由一个倍的dist (Γ) d + 1−n \operatornamedist{ (}\cdot, \Gamma)^ {d+1-n}。我们定义弱解;在适当的加权Sobolev空间中证明迹定理和可拓定理;建立了极大值原理、De Giorgi-Nash-Moser估计、Harnack不等式、解(边界内和边界处)的Hölder连续性。我们定义了Green函数,并提供了Green函数及其梯度的点向和/或lpl ^p估计的基本集合。在此基础上,我们定义了与ll相关的调和测度,建立了它的倍性、非简并性、极变公式,最后给出了局部解的比较原理。在即将出现的另一篇文章中,我们将证明当Γ \Gamma是具有小Lipschitz常数的Lipschitz函数的图时,我们可以找到一个椭圆算子L L,对于它,这里给出的调和测度相对于Γ \Gamma上的d d -Hausdorff测度是绝对连续的,反之亦然。从而将Dahlberg定理推广到余维数大于1的一些集合。
Elliptic Theory for Sets with Higher Co-dimensional Boundaries
Many geometric and analytic properties of sets hinge on the properties of elliptic measure, notoriously missing for sets of higher co-dimension. The aim of this manuscript is to develop a version of elliptic theory, associated to a linear PDE, which ultimately yields a notion analogous to that of the harmonic measure, for sets of codimension higher than 1.
To this end, we turn to degenerate elliptic equations. Let Γ⊂Rn\Gamma \subset \mathbb {R}^n be an Ahlfors regular set of dimension d>n−1d>n-1 (not necessarily integer) and Ω=Rn∖Γ\Omega = \mathbb {R}^n \setminus \Gamma. Let L=−divA∇L = - \operatorname {div} A\nabla be a degenerate elliptic operator with measurable coefficients such that the ellipticity constants of the matrix AA are bounded from above and below by a multiple of dist(⋅,Γ)d+1−n\operatorname {dist}(\cdot , \Gamma )^{d+1-n}. We define weak solutions; prove trace and extension theorems in suitable weighted Sobolev spaces; establish the maximum principle, De Giorgi-Nash-Moser estimates, the Harnack inequality, the Hölder continuity of solutions (inside and at the boundary). We define the Green function and provide the basic set of pointwise and/or LpL^p estimates for the Green function and for its gradient. With this at hand, we define harmonic measure associated to LL, establish its doubling property, non-degeneracy, change-of-the-pole formulas, and, finally, the comparison principle for local solutions.
In another article to appear, we will prove that when Γ\Gamma is the graph of a Lipschitz function with small Lipschitz constant, we can find an elliptic operator LL for which the harmonic measure given here is absolutely continuous with respect to the dd-Hausdorff measure on Γ\Gamma and vice versa. It thus extends Dahlberg’s theorem to some sets of codimension higher than 1.