具有微观结构和微温度的物体热弹性数学问题

IF 0.3 Q4 MATHEMATICS
L. Giorgashvili, S. Zazashvili
{"title":"具有微观结构和微温度的物体热弹性数学问题","authors":"L. Giorgashvili,&nbsp;S. Zazashvili","doi":"10.1016/j.trmi.2017.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>The paper deals with the linear theory of thermoelasticity for elastic isotropic microstretch materials with microtemperatures and microdilatations. For the differential equations of pseudo-oscillations the fundamental matrix is constructed explicitly in terms of elementary functions. With the help of the corresponding Green identities the general integral representation formula of solutions by means of generalized layer and Newtonian potentials are derived. The basic Dirichlet and Neumann type boundary value problems are formulated in appropriate function spaces and the uniqueness theorems are proved. The existence theorems for classical solutions are established by using the potential method.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 3","pages":"Pages 350-378"},"PeriodicalIF":0.3000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2017.04.002","citationCount":"2","resultStr":"{\"title\":\"Mathematical problems of thermoelasticity of bodies with microstructure and microtemperatures\",\"authors\":\"L. Giorgashvili,&nbsp;S. Zazashvili\",\"doi\":\"10.1016/j.trmi.2017.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper deals with the linear theory of thermoelasticity for elastic isotropic microstretch materials with microtemperatures and microdilatations. For the differential equations of pseudo-oscillations the fundamental matrix is constructed explicitly in terms of elementary functions. With the help of the corresponding Green identities the general integral representation formula of solutions by means of generalized layer and Newtonian potentials are derived. The basic Dirichlet and Neumann type boundary value problems are formulated in appropriate function spaces and the uniqueness theorems are proved. The existence theorems for classical solutions are established by using the potential method.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"171 3\",\"pages\":\"Pages 350-378\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2017.04.002\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S234680921730017X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S234680921730017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了具有微温度和微膨胀的弹性各向同性微拉伸材料的热弹性线性理论。对于伪振动微分方程,用初等函数明确地构造了基本矩阵。利用相应的格林恒等式,导出了用广义层和牛顿势表示解的一般积分表示公式。在适当的函数空间中构造了基本的Dirichlet型和Neumann型边值问题,并证明了唯一性定理。利用势法建立了经典解的存在性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical problems of thermoelasticity of bodies with microstructure and microtemperatures

The paper deals with the linear theory of thermoelasticity for elastic isotropic microstretch materials with microtemperatures and microdilatations. For the differential equations of pseudo-oscillations the fundamental matrix is constructed explicitly in terms of elementary functions. With the help of the corresponding Green identities the general integral representation formula of solutions by means of generalized layer and Newtonian potentials are derived. The basic Dirichlet and Neumann type boundary value problems are formulated in appropriate function spaces and the uniqueness theorems are proved. The existence theorems for classical solutions are established by using the potential method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信