Francesca Antonella Sepúlveda, Julio Sánchez, Diego P. Oyarzun, Fidel E. Rodríguez-González, Alain Tundidor-Camba, Claudio García-Herrera, Paula A. Zapata, Guadalupe del C. Pizarro, Rudy Martin-Trasanco
{"title":"聚己内酯与聚β-环糊精聚合物共混物:一种用于药物释放的生物聚合物复合膜","authors":"Francesca Antonella Sepúlveda, Julio Sánchez, Diego P. Oyarzun, Fidel E. Rodríguez-González, Alain Tundidor-Camba, Claudio García-Herrera, Paula A. Zapata, Guadalupe del C. Pizarro, Rudy Martin-Trasanco","doi":"10.1007/s10847-021-01101-6","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, biomedical films containing drug carriers are preferred over conventional ones, since the protection of the injury and the therapy is joined within a single device. In the current work, we prepared polycaprolactone (PCL) composite films with β-cyclodextrin (βCD) or its epichlorohydrin crosslinked polymer (βCDP) as ibuprofen (Ibu) drug carrier. The composite films were prepared at different PCL/additive ratios (2, 5, 10 and 20 wt%). ATR-FTIR spectroscopy and water contact angle (WCA) measurements indicated a scarce presence of the additives on the surface. Cross-section scanning electron micrographs showed the presence of aggregates corresponding to βCD and βCDP in the inner regions of the films. The incorporation of βCD and βCDP into the PCL films did not affect their thermal properties as was determined from differential scanning calorimetry (DSC). PCL-films with 10 wt% of the inclusion complexes Ibu@βCD and Ibu@βCDP were prepared and the release studies were performed. At pH = 7.2, PCL-Ibu@βCDP composite film released 55% of Ibu within the first six hours; eight times the amount released by PCL-Ibu@βCD within the same time interval. A plausible mechanism for ibuprofen release is discussed based on the cross-section SEM micrographs of composite films.</p></div>","PeriodicalId":54324,"journal":{"name":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","volume":"102 1-2","pages":"65 - 76"},"PeriodicalIF":1.7000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10847-021-01101-6.pdf","citationCount":"1","resultStr":"{\"title\":\"Polycaprolactone and poly-β-cyclodextrin polymer blend: a Biopolymers composite film for drug release\",\"authors\":\"Francesca Antonella Sepúlveda, Julio Sánchez, Diego P. Oyarzun, Fidel E. Rodríguez-González, Alain Tundidor-Camba, Claudio García-Herrera, Paula A. Zapata, Guadalupe del C. Pizarro, Rudy Martin-Trasanco\",\"doi\":\"10.1007/s10847-021-01101-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nowadays, biomedical films containing drug carriers are preferred over conventional ones, since the protection of the injury and the therapy is joined within a single device. In the current work, we prepared polycaprolactone (PCL) composite films with β-cyclodextrin (βCD) or its epichlorohydrin crosslinked polymer (βCDP) as ibuprofen (Ibu) drug carrier. The composite films were prepared at different PCL/additive ratios (2, 5, 10 and 20 wt%). ATR-FTIR spectroscopy and water contact angle (WCA) measurements indicated a scarce presence of the additives on the surface. Cross-section scanning electron micrographs showed the presence of aggregates corresponding to βCD and βCDP in the inner regions of the films. The incorporation of βCD and βCDP into the PCL films did not affect their thermal properties as was determined from differential scanning calorimetry (DSC). PCL-films with 10 wt% of the inclusion complexes Ibu@βCD and Ibu@βCDP were prepared and the release studies were performed. At pH = 7.2, PCL-Ibu@βCDP composite film released 55% of Ibu within the first six hours; eight times the amount released by PCL-Ibu@βCD within the same time interval. A plausible mechanism for ibuprofen release is discussed based on the cross-section SEM micrographs of composite films.</p></div>\",\"PeriodicalId\":54324,\"journal\":{\"name\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"volume\":\"102 1-2\",\"pages\":\"65 - 76\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10847-021-01101-6.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10847-021-01101-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10847-021-01101-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Polycaprolactone and poly-β-cyclodextrin polymer blend: a Biopolymers composite film for drug release
Nowadays, biomedical films containing drug carriers are preferred over conventional ones, since the protection of the injury and the therapy is joined within a single device. In the current work, we prepared polycaprolactone (PCL) composite films with β-cyclodextrin (βCD) or its epichlorohydrin crosslinked polymer (βCDP) as ibuprofen (Ibu) drug carrier. The composite films were prepared at different PCL/additive ratios (2, 5, 10 and 20 wt%). ATR-FTIR spectroscopy and water contact angle (WCA) measurements indicated a scarce presence of the additives on the surface. Cross-section scanning electron micrographs showed the presence of aggregates corresponding to βCD and βCDP in the inner regions of the films. The incorporation of βCD and βCDP into the PCL films did not affect their thermal properties as was determined from differential scanning calorimetry (DSC). PCL-films with 10 wt% of the inclusion complexes Ibu@βCD and Ibu@βCDP were prepared and the release studies were performed. At pH = 7.2, PCL-Ibu@βCDP composite film released 55% of Ibu within the first six hours; eight times the amount released by PCL-Ibu@βCD within the same time interval. A plausible mechanism for ibuprofen release is discussed based on the cross-section SEM micrographs of composite films.
期刊介绍:
The Journal of Inclusion Phenomena and Macrocyclic Chemistry is the premier interdisciplinary publication reporting on original research into all aspects of host-guest systems. Examples of specific areas of interest are: the preparation and characterization of new hosts and new host-guest systems, especially those involving macrocyclic ligands; crystallographic, spectroscopic, thermodynamic and theoretical studies; applications in chromatography and inclusion polymerization; enzyme modelling; molecular recognition and catalysis by inclusion compounds; intercalates in biological and non-biological systems, cyclodextrin complexes and their applications in the agriculture, flavoring, food and pharmaceutical industries; synthesis, characterization and applications of zeolites.
The journal publishes primarily reports of original research and preliminary communications, provided the latter represent a significant advance in the understanding of inclusion science. Critical reviews dealing with recent advances in the field are a periodic feature of the journal.