嵌入度为18的椭圆曲线上的塔楼施工技术

Q4 Mathematics
Ismail Assoujaa, Siham Ezzouak, H. Mouanis
{"title":"嵌入度为18的椭圆曲线上的塔楼施工技术","authors":"Ismail Assoujaa, Siham Ezzouak, H. Mouanis","doi":"10.37394/23205.2022.21.39","DOIUrl":null,"url":null,"abstract":"Abstract Pairing based cryptography is one of the best security solution that devote a lot of attention. So, to make pairing practical, secure and computationally effcient, we choose to work with extension finite field of the form 𝔽pk with k ≥ 12. In this paper, we focus on the case of curves with embedding degree 18. We use the tower building technique, and study the case of degree 2 or 3 twist to carry out most arithmetics operations in 𝔽p2 , 𝔽p3, 𝔽p6, 𝔽p9 and 𝔽p18, thus we speed up the computation in optimal ate pairing.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"83 1","pages":"103 - 118"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tower Building Technique on Elliptic Curve with Embedding Degree 18\",\"authors\":\"Ismail Assoujaa, Siham Ezzouak, H. Mouanis\",\"doi\":\"10.37394/23205.2022.21.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Pairing based cryptography is one of the best security solution that devote a lot of attention. So, to make pairing practical, secure and computationally effcient, we choose to work with extension finite field of the form 𝔽pk with k ≥ 12. In this paper, we focus on the case of curves with embedding degree 18. We use the tower building technique, and study the case of degree 2 or 3 twist to carry out most arithmetics operations in 𝔽p2 , 𝔽p3, 𝔽p6, 𝔽p9 and 𝔽p18, thus we speed up the computation in optimal ate pairing.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"83 1\",\"pages\":\"103 - 118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23205.2022.21.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23205.2022.21.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要基于配对的加密是目前最受关注的安全解决方案之一。因此,为了使配对实用、安全且计算效率高,我们选择使用k≥12的形式𝔽pk的扩展有限域。本文主要研究嵌入度为18的曲线的情况。我们采用塔式构造技术,研究了2度或3度扭转的情况,在𝔽p2、𝔽p3、𝔽p6、𝔽p9和𝔽p18中进行了大部分的算术运算,从而加快了最优配对的计算速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tower Building Technique on Elliptic Curve with Embedding Degree 18
Abstract Pairing based cryptography is one of the best security solution that devote a lot of attention. So, to make pairing practical, secure and computationally effcient, we choose to work with extension finite field of the form 𝔽pk with k ≥ 12. In this paper, we focus on the case of curves with embedding degree 18. We use the tower building technique, and study the case of degree 2 or 3 twist to carry out most arithmetics operations in 𝔽p2 , 𝔽p3, 𝔽p6, 𝔽p9 and 𝔽p18, thus we speed up the computation in optimal ate pairing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信