准稳定理想的Pommaret-Seiler分辨率的元胞约简

IF 0.4 Q4 MATHEMATICS, APPLIED
Rodrigo Iglesias, E. Sáenz-de-Cabezón
{"title":"准稳定理想的Pommaret-Seiler分辨率的元胞约简","authors":"Rodrigo Iglesias, E. Sáenz-de-Cabezón","doi":"10.1145/3511528.3511537","DOIUrl":null,"url":null,"abstract":"Involutive bases were introduced in [6] as a type of Gröbner bases with additional combinatorial properties. Pommaret bases are a particular kind of involutive bases with strong relations to commutative algebra and algebraic geometry[11, 12].","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"55 1","pages":"102 - 106"},"PeriodicalIF":0.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular reductions of the Pommaret-Seiler resolution for Quasi-stable ideals\",\"authors\":\"Rodrigo Iglesias, E. Sáenz-de-Cabezón\",\"doi\":\"10.1145/3511528.3511537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Involutive bases were introduced in [6] as a type of Gröbner bases with additional combinatorial properties. Pommaret bases are a particular kind of involutive bases with strong relations to commutative algebra and algebraic geometry[11, 12].\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"55 1\",\"pages\":\"102 - 106\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511528.3511537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511528.3511537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对合基在[6]中被引入,作为一类具有额外组合性质的Gröbner基。Pommaret基是一类特殊的对合基,与交换代数和代数几何有很强的关系[11,12]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellular reductions of the Pommaret-Seiler resolution for Quasi-stable ideals
Involutive bases were introduced in [6] as a type of Gröbner bases with additional combinatorial properties. Pommaret bases are a particular kind of involutive bases with strong relations to commutative algebra and algebraic geometry[11, 12].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信