M. El Jarroudi, Mhamed El Merzguioui, M. Er-Riani, A. Lahrouz, Jamal El Amrani
{"title":"三维分形带状增强弹性薄板降维分析","authors":"M. El Jarroudi, Mhamed El Merzguioui, M. Er-Riani, A. Lahrouz, Jamal El Amrani","doi":"10.1017/s0956792523000025","DOIUrl":null,"url":null,"abstract":"\n The aim of this paper is to study the dimension reduction analysis of an elastic plate with small thickness reinforced with increasing number of thin ribbons developing fractal geometry. We prove the \n \n \n \n$\\Gamma $\n\n \n -convergence of the energy functionals to a two-dimensional effective energy including singular terms supported within the Sierpinski carpet.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimension reduction analysis of a three-dimensional thin elastic plate reinforced with fractal ribbons\",\"authors\":\"M. El Jarroudi, Mhamed El Merzguioui, M. Er-Riani, A. Lahrouz, Jamal El Amrani\",\"doi\":\"10.1017/s0956792523000025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The aim of this paper is to study the dimension reduction analysis of an elastic plate with small thickness reinforced with increasing number of thin ribbons developing fractal geometry. We prove the \\n \\n \\n \\n$\\\\Gamma $\\n\\n \\n -convergence of the energy functionals to a two-dimensional effective energy including singular terms supported within the Sierpinski carpet.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792523000025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792523000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Dimension reduction analysis of a three-dimensional thin elastic plate reinforced with fractal ribbons
The aim of this paper is to study the dimension reduction analysis of an elastic plate with small thickness reinforced with increasing number of thin ribbons developing fractal geometry. We prove the
$\Gamma $
-convergence of the energy functionals to a two-dimensional effective energy including singular terms supported within the Sierpinski carpet.