椭圆$K3$曲面的模:Monodromy和Shimada根格层(附Markus Kirschmer附录)

IF 1.2 1区 数学 Q1 MATHEMATICS
K. Hulek, M. Lonne
{"title":"椭圆$K3$曲面的模:Monodromy和Shimada根格层(附Markus Kirschmer附录)","authors":"K. Hulek, M. Lonne","doi":"10.14231/ag-2022-006","DOIUrl":null,"url":null,"abstract":"In this paper we investigate two stratifications of the moduli space of elliptically fibred K3 surfaces. The first comes from Shimada’s classification of connected components of the moduli of elliptically fibred K3 surfaces and is closely related to the root lattices of the fibration. The second is the monodromy stratification defined by Bogomolov, Petrov and Tschinkel. The main result of the paper is a classification of all positive-dimensional ambi-typical strata, that is, strata which are both Shimada root strata and monodromy strata. We also discuss the relationship with moduli spaces of lattice-polarised K3 surfaces. The appendix by M. Kirschmer contains computational results about the 1-dimensional ambi-typical strata.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Moduli of elliptic $K3$ surfaces: Monodromy and Shimada root lattice strata \\\\n (with an appendix by Markus Kirschmer)\",\"authors\":\"K. Hulek, M. Lonne\",\"doi\":\"10.14231/ag-2022-006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate two stratifications of the moduli space of elliptically fibred K3 surfaces. The first comes from Shimada’s classification of connected components of the moduli of elliptically fibred K3 surfaces and is closely related to the root lattices of the fibration. The second is the monodromy stratification defined by Bogomolov, Petrov and Tschinkel. The main result of the paper is a classification of all positive-dimensional ambi-typical strata, that is, strata which are both Shimada root strata and monodromy strata. We also discuss the relationship with moduli spaces of lattice-polarised K3 surfaces. The appendix by M. Kirschmer contains computational results about the 1-dimensional ambi-typical strata.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2022-006\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2022-006","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了椭圆纤维K3表面模量空间的两个分层。第一个来自Shimada对椭圆纤维K3表面模量的连通分量的分类,并且与纤维的根晶格密切相关。第二种是Bogomolov、Petrov和Tschinkel定义的一元分层。本文的主要成果是对所有正维的ambi典型地层进行了分类,即既是岛田根层又是单生层的地层。我们还讨论了晶格极化K3表面与模空间的关系。M.Kirschmer的附录中包含了关于一维二元典型地层的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moduli of elliptic $K3$ surfaces: Monodromy and Shimada root lattice strata \n (with an appendix by Markus Kirschmer)
In this paper we investigate two stratifications of the moduli space of elliptically fibred K3 surfaces. The first comes from Shimada’s classification of connected components of the moduli of elliptically fibred K3 surfaces and is closely related to the root lattices of the fibration. The second is the monodromy stratification defined by Bogomolov, Petrov and Tschinkel. The main result of the paper is a classification of all positive-dimensional ambi-typical strata, that is, strata which are both Shimada root strata and monodromy strata. We also discuss the relationship with moduli spaces of lattice-polarised K3 surfaces. The appendix by M. Kirschmer contains computational results about the 1-dimensional ambi-typical strata.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信