{"title":"椭圆$K3$曲面的模:Monodromy和Shimada根格层(附Markus Kirschmer附录)","authors":"K. Hulek, M. Lonne","doi":"10.14231/ag-2022-006","DOIUrl":null,"url":null,"abstract":"In this paper we investigate two stratifications of the moduli space of elliptically fibred K3 surfaces. The first comes from Shimada’s classification of connected components of the moduli of elliptically fibred K3 surfaces and is closely related to the root lattices of the fibration. The second is the monodromy stratification defined by Bogomolov, Petrov and Tschinkel. The main result of the paper is a classification of all positive-dimensional ambi-typical strata, that is, strata which are both Shimada root strata and monodromy strata. We also discuss the relationship with moduli spaces of lattice-polarised K3 surfaces. The appendix by M. Kirschmer contains computational results about the 1-dimensional ambi-typical strata.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Moduli of elliptic $K3$ surfaces: Monodromy and Shimada root lattice strata \\\\n (with an appendix by Markus Kirschmer)\",\"authors\":\"K. Hulek, M. Lonne\",\"doi\":\"10.14231/ag-2022-006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate two stratifications of the moduli space of elliptically fibred K3 surfaces. The first comes from Shimada’s classification of connected components of the moduli of elliptically fibred K3 surfaces and is closely related to the root lattices of the fibration. The second is the monodromy stratification defined by Bogomolov, Petrov and Tschinkel. The main result of the paper is a classification of all positive-dimensional ambi-typical strata, that is, strata which are both Shimada root strata and monodromy strata. We also discuss the relationship with moduli spaces of lattice-polarised K3 surfaces. The appendix by M. Kirschmer contains computational results about the 1-dimensional ambi-typical strata.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2022-006\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2022-006","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Moduli of elliptic $K3$ surfaces: Monodromy and Shimada root lattice strata \n (with an appendix by Markus Kirschmer)
In this paper we investigate two stratifications of the moduli space of elliptically fibred K3 surfaces. The first comes from Shimada’s classification of connected components of the moduli of elliptically fibred K3 surfaces and is closely related to the root lattices of the fibration. The second is the monodromy stratification defined by Bogomolov, Petrov and Tschinkel. The main result of the paper is a classification of all positive-dimensional ambi-typical strata, that is, strata which are both Shimada root strata and monodromy strata. We also discuss the relationship with moduli spaces of lattice-polarised K3 surfaces. The appendix by M. Kirschmer contains computational results about the 1-dimensional ambi-typical strata.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.