由lsamvy噪声驱动的随机方程的均值的不变测度和有界性

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
B. Maslowski, O. Týbl
{"title":"由lsamvy噪声驱动的随机方程的均值的不变测度和有界性","authors":"B. Maslowski, O. Týbl","doi":"10.1142/s0219493722400196","DOIUrl":null,"url":null,"abstract":"Existence of invariant measures and average stability in the mean are studied for stochastic differential equations driven by Lévy process. In particular, some natural conditions are found that verify stabilization of the equation (in the sense of the existence of invariant measures) by jump noise terms. These conditions are verified in several examples.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Invariant measures and boundedness in the mean for stochastic equations driven by Lévy noise\",\"authors\":\"B. Maslowski, O. Týbl\",\"doi\":\"10.1142/s0219493722400196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existence of invariant measures and average stability in the mean are studied for stochastic differential equations driven by Lévy process. In particular, some natural conditions are found that verify stabilization of the equation (in the sense of the existence of invariant measures) by jump noise terms. These conditions are verified in several examples.\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493722400196\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493722400196","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

研究了lsamvy过程驱动的随机微分方程的不变量测度的存在性和均值的稳定性。特别地,我们发现了一些用跳跃噪声项来验证方程稳定的自然条件(在不变测度存在的意义上)。通过几个实例验证了这些条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant measures and boundedness in the mean for stochastic equations driven by Lévy noise
Existence of invariant measures and average stability in the mean are studied for stochastic differential equations driven by Lévy process. In particular, some natural conditions are found that verify stabilization of the equation (in the sense of the existence of invariant measures) by jump noise terms. These conditions are verified in several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信